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ABSTRACT

We revisit the generalized method of moments (GMM) estimation of the non-Gaussian structural vector
autoregressive (SVAR) model. It is shown that in the n-dimensional SVAR model, global and local identifica-
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tion of the contemporaneous impact matrix is achieved with as few as n2 + n(n — 1)/2 suitably selected

moment conditions, when at least n — 1 of the structural errors are all leptokurtic (or platykurtic). We
also relax the potentially problematic assumption of mutually independent structural errors in part of the
previous literature to the requirement that the errors be mutually uncorrelated. Moreover, we assume the
error term to be only serially uncorrelated, not independent in time, which allows for univariate conditional
heteroscedasticity in its components. A small simulation experiment highlights the good properties of the
estimator and the proposed moment selection procedure. The use of the methods is illustrated by means
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of an empirical application to the effect of a tax increase on U.S. gasoline consumption and carbon dioxide

emissions.

1. Introduction

Efficient use of the statistical properties of the data for iden-
tification has recently become increasingly popular in the lit-
erature on structural vector autoregressive (SVAR) models. In
particular, heteroscedasticity and non-Gaussianity commonly
encountered in economic data are features that facilitate statis-
tical identification (see Kilian and Liitkepohl (2017, chap. 14)
for a survey of some of the literature). While economic knowl-
edge is still required to give statistically identified structural
shocks an interpretation, the fact that a SVAR model is exactly
identified by statistical properties is useful as it presumably
enhances estimation accuracy and makes it possible to test any
economic identifying restrictions, including those entertained
in the previous literature.

In this article, we revisit the generalized method of moments
(GMM) approach put forth by Lanne and Luoto (2021) and
Keweloh (2021). Lanne and Luoto showed how local identifi-
cation of the parameters of the SVAR model is achieved by a
suitable selection of co-kurtosis conditions when the structural
errors are orthogonal. Keweloh, in turn, pointed out that these
conditions do not guarantee global identification, and intro-
duced a much larger set of moment conditions that, under the
stronger assumption of independent structural shocks, yields
a locally and globally identified GMM estimator. However, as
we show by a counterexample in Section 2.2, while his moment
conditions are sufficient for identification, they are not all nec-
essary, that is, global and local identification can be achieved by
a considerably smaller set.

Lanne and Luoto (2021) and Keweloh (2021) assume that at
most one of the structural errors has zero excess kurtosis. While

we are able to demonstrate by a counterexample that not all
of Keweloh’s co-kurtosis conditions are necessarily needed for
global identification under this assumption, it does not seem
possible to show generally that our reduced set suffices to that
end. However, we are able to show global identification under
the assumption of all (but one) structural errors being either
leptokurtic or platykurtic. In other words, in an n-dimensional
system, it is required for global identification that at least n — 1
structural errors have excess kurtosis of the same sign. This
assumption is slightly stronger than the ubiquitous assumption
of at least n — 1 non-Gaussian shocks in the related literature.
However, it seems innocuous, as platykurtic errors are extremely
unlikely to be encountered in economic applications, while
economic shocks can, in general, be expected to be leptokurtic
(see, e.g., Acemoglu, Ozdaglar, and Tahbaz-Salehi (2017), who
showed that the long tails of aggregate variables, such as the
GDP, can be explained by sectoral heterogeneity as long as
microeconomic shocks, such as total factor productivity shocks,
in different sectors have heavy tails, which they found indeed to
be the case, at least in U.S. data).

In contrast to some of the previous statistical identification
literature, where mutual independence of the structural errors
has been assumed, we make the milder assumption that the
errors are mutually uncorrelated. Moreover, in line with Guay
(2021), we assume that the error term is only serially uncorre-
lated, not independent in time, which allows for conditional het-
eroscedasticity in the individual components of the error term.
Under these assumptions, we show that when the errors exhibit
no excess co-kurtosis, only certain n?> moment conditions are
needed for global identification of the n elements of contempo-
raneous response matrix as long as at least n — 1 of the structural
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errors are all leptokurtic (or platykurtic). In addition, global and
first-order local identification are achieved by augmenting the
n? moment conditions by n(n — 1)/2 asymmetric co-kurtosis
conditions. This facilitates statistical inference, and while it is
more than mere consistency calls for, the number of conditions
required is still considerably smaller than required in Keweloh
(2021). Our result is likely to be of importance especially in
models with a large number of variables compared to the sample
size. Keweloh, acknowledging the potential problems of a very
large set of moment conditions, also introduced a fast SVAR-
GMM estimator, which, however, is not asymptotically efficient.
In contrast, the GMM estimator based on our moment condi-
tions is not hampered by the latter property. Finally, we propose
aprocedure, based on a well-known moment selection criterion,
for finding the optimal set of moment conditions among the sets
of n? +n(n—1)/2 moment conditions that guarantee global and
first-order local identification.

In addition to Lanne and Luoto (2021) and Keweloh
(2021), GMM estimation of SVAR models has recently been
considered by Guay (2021) and Lewis (2021) (see also Herwartz
and Plodt (2016), Braun (2021), Gouriéroux, Monfort, and
Renne (2017), and Gouriéroux and Jasiak (2021) for closely
related approaches). Guay derives conditions for partial local
identification and derives procedures for testing for local
identification of part of the structural shocks. His identification
results are based on the assumption that the orthogonal
structural errors exhibit zero co-skewness and no excess co-
kurtosis, which comes very close to assuming independence
of the structural errors. Although Guay concentrates on local
identification, as a matter of fact, our results in Supplementary
Appendix F can be used to show that his GMM estimator also
achieves global identification when (all but one of) the structural
errors exhibit (positive) excess kurtosis. Nevertheless, in the
fully identified model, he suggests using the same large set of
moment conditions as Keweloh. Lewis’s approach is different
in that instead of co-skewness and co-kurtosis conditions, he
considers identification based on the autocovariance structure
of the second moments of the errors implied by an arbitrary
stochastic process for the error variances. However, without
parametric assumptions his GMM estimator faces challenges
in small samples encountered in typical applications, and he
actually ends up recommending a specific parametric model to
capture the conditional heteroscedasticity.

We illustrate the use of the methods in an empirical appli-
cation to the effect of a tax increase on U.S. gasoline consump-
tion and CO; emissions. In particular, we consider a bivariate
SVAR specification introduced by Davis and Kilian (2011) that
contains the percent change in the real gasoline consumption
and the percent change in the inflation-adjusted gasoline tax.
Unlike Davis and Kilian, in our setup, we are able to test their
identification restriction, and it is not rejected at conventional
significance levels. Furthermore, our estimates of the effects
of a tax increase, obtained without imposing any additional
restrictions, turn out to be quite close to those in Davis and
Kilian.

The structure of the rest of the article is as follows. In
Section 2, we introduce the SVAR model and detail the
assumptions under which local and global identification of the

GMM estimator can be shown. Specifically, in Section 2.1, we
introduce the GMM estimator. For ease of exposition, we first
concentrate on the two-stage estimator based on residuals of
a vector autoregression estimated by ordinary least squares. In
high-dimensional SVAR models it may also be the only feasible
alternative although, in general, we recommend estimating
all parameters of the SVAR model jointly. In Section 2.2, we
first show by a counterexample that not all of Keweloh’s (2021)
moment conditions are necessary for global identification, and
then derive the much smaller set of moment conditions required
for global identification under the slightly stronger conditions
that all (but one) structural errors be either leptokurtic or
platykurtic. For local identification, and hence, asymptotic
inference, additional moment conditions are needed, as we show
in Section 2.3, where also the asymptotic distribution of the two-
stage GMM estimator is derived. The asymptotic distribution
of the joint GMM estimator is, in turn, derived in Section 2.4.
The optimal selection of moment conditions is discussed in
Section 2.5. Finally, in Section 2.6, the computation of impulse
responses and their confidence intervals is considered. Section 3
contains the results of small simulation experiment to highlight
the properties of the proposed GMM estimator. Section 4
contains the empirical application to the effect of a tax increase
on U.S. gasoline consumption. Finally, Section 5 concludes. The
proofs of the results in Section 2 are deferred to Supplementary
Appendix.

2. Model

We consider the structural VAR model of order p,

w=v+Apy1+--+Apy—p+Be, t=1,...,T, (1)
where y; is the n-dimensional time series of interest, v is an (n x
1) intercept term, and Ay, ..., A, and B are (n X n) parameter
matrices. The (n x n) nonsingular matrix B defines the (n x
1) vector of reduced-form errors u; as a linear combination of
the structural errors &; with zero mean and identity covariance
matrix, that is, u; = Be;. We further assume y; to be stable, that
is,

detA () Y det(I, — Ajz— - — A) £0, |2 <1, (2)

and weakly stationary.
An alternative SVAR formulation is obtained by left-
multiplying (1) by the inverse of B:

Agyr = v* + Ay + - +A;}/t—p + & 3)

where Ag=B"1, v*=B"lp, and A]’-k =B*1Aj G=1...,p).
Typically, the diagonal elements of A are normalized to unity,
and the covariance matrix of &; is a diagonal matrix in this
specification. In our empirical application in Section 4, we
consider this formulation of the SVAR model.

Following Lanne and Luoto (2021) and Keweloh (2021),
we assume that at most one of the elements of the structural
error vector &; is Gaussian. Specifically, we make the following
assumption:



Assumption 1.

(i) The error process & = (€14...,&x) is a sequence of
serially uncorrelated random vectors.

(ii) The components €1,. . ., &y of & are orthogonal and have
no excess co-kurtosis.

(iii) Each component €j, i = 1,. .., n, has mean zero, variance
unity, and finite third and fourth moments.

(iv) At most one component of &; has zero excess kurtosis.

The requirement of no excess co-kurtosis in Assumption 1(ii)
means that, given Assumption 1(iii), E(¢itejtéxer) = 1 when
i=kj=1%#*kori=1Lj=k#*lori=j#*k=1
(i,j,k,1 = 1,...,n) and zero otherwise (excluding univariate
kurtosis E(sf) fori = 1,...,n,wheni = j = k = I).
These are the values that would prevail if the structural errors
were independent. However, Assumption 1(ii) is clearly less
restrictive than the independence assumption of Lanne, Meitz,
and Saikkonen (2017), Keweloh (2021), and Herwartz (2018)
since, in addition to no excess co-kurtosis, it only requires
that the shocks be orthogonal, and hence does not impose any
restrictions, for instance, on co-skewness. As pointed out by
Kilian and Liitkepohl (2017, chap. 14), assuming independence
is potentially problematic in that independent structural errors
need not be obtained as linear transformations of the residuals of
areduced-form VAR model. Hence, the independence assump-
tion may be more restrictive than appears at first sight. While
our Assumption 1(ii) is stronger than mere orthogonality, the
structural shocks are still linear combinations of the reduced-
form residuals. Finally, it is worth pointing out that Assump-
tion 1(i) allows each component ¢; to follow a univariate con-
ditionally heteroscedastic process.

2.1. GMM Estimation

Recently, Lanne and Luoto (2021), and Keweloh (2021) have
suggested estimation of B in (1) by the GMM, that is, by mini-
mizing with respect to the n-dimensional vector of parameters
of interest ¥ = vec(B) the objective function

T T
Qr®) =T flup®WrT™ > f(u, ),  (4)
t=1 t=1

where u; = yr — v — A1 — -+ — Apyr—p. The positive
semidefinite (g x ¢) matrix Wr (potentially dependent on
the data) converging to a positive definite weighting matrix
W contains the weights of the sample counterparts of the g-
dimensional vector of moment conditions E [f(ut, 19)] = 0.
Notice that (4) depends on only u; and B. This is facilitated by
the fact that the intercept v and the autoregressive coefficient
matrices Ay,...,Ap of the reduced-form VAR model (1) can be
estimated consistently by ordinary least squares (OLS). Hence,
in practice the estimation of B can be based on the reduced-form
residuals, in line with much of the previous related literature. It
must be borne in mind, however, that the asymptotic covariance
matrix of this two-stage GMM estimator depends on the OLS
estimation error (we thank an anonymous referee for pointing
this out). When there is a need to make the dependence of the
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reduced form error vector u; on w = vec(v, Ay, . .
we denote u; (7).

Lanne and Luoto (2021) based estimation on a subset of the
following moment conditions suggested by Assumption 1:

. Ap) explicit,

E(gizt)_lzo’ i=1,...,n (5)
E(eagjt) =0, i>j ij=1,...,n )
E() 120, i=hbjmtn O
E(gle) =0, i#j (8)

whereas, in addition to (5) and (6), Keweloh (2021) considered
all fourth-order co-moment conditions, including conditions
(7) and (8). Moment conditions (5) and (6) naturally follow from
the assumptions of zero mean, unit variance, and orthogonality
of the components of &;. Under Gaussianity, uncorrelatedness
implies independence, and hence the symmetric and asymmet-
ric co-kurtosis conditions (7) and (8) are implied by conditions
(5) and (6) and the zero-mean assumption, while otherwise they
are informative in estimation.

It is, in general, desirable to use the efficient estimator with
minimum asymptotic variance obtained by setting W = Hy*
with

Hy=[G:(F'®L) ILIHIG(F'®IL) LI, (9)

where G, = E[M

pE ], Yy and mg are the true val-
ues of ¥ and 7, respectively, F = E(Z,_1Z;,_;) with Z; =
(Lyp--->¥—py1)’> and H is the long-run covariance matrix
of all moment conditions (see Supplementary Appendix E and
Gourieroux et al. (2020, Supplementary Appendix, Section 5.2),
for details). The form of (9) reflects the fact that in the case
of the two-stage GMM estimator, the optimal weighting matrix
W =H, ! depends on the OLS estimation error.

The matrix H is given by (see, e.g., Hansen 1982)

o 2 (T Zthl Vec(ut(no)Zgl))}
0 Tll)moovar |:T < TV fu(mo), %) )1

and it is estimated consistently (under regularity conditions, see
Newey and West 1994) by the following heteroscedasticity and
autocorrelation consistent covariance (HAC) matrix estimator:

T—1
Huac = To + Z Wi T (fl + f'f) , (10)
i=1

where IA*,- is a consistent estimator of I';, the ith autocovari-
ance matrix of the vector [vec(u(0)Z;_,)', f (us(m0), 90)']. A
number of different kinds of weighting functions (or kernels)
to compute the weights w; 1 have been put forth in the GMM
literature, including the Bartlett, Parzen and Quadratic Spectral
kernels, but according to the simulation evidence of Newey
and West (1994), the bandwidth (the number of autocovariance
matrices included) is far more important for the finite-sample
performance of the HAC estimator than the choice of the kernel,
and they propose an automatic bandwidth selection procedure,
which, coupled with the Bartlett kernel, we also employ in
Sections 3 and 4.

In practice, estimation can be carried out in at least three
different ways using numerical optimization methods. First,
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Hansen’s (1982) two-step estimator is obtained by first minimiz-
ing (4) with Wt suboptimal (such as the identity matrix), and
then re-estimating ¢ based on I:IHAC computed using the first-
step estimator of ¥. Second, this procedure can be continued
iteratively until the estimate of ¥ converges to obtain the iterated
GMM estimator. Finally, the continuous updating estimator
(CUE) of Hansen, Heaton, and Yaron (1996) acknowledges the
dependence of the efficient weighting matrix on the parameters.
Itis based on directly minimizing with respect to ¥ the objective
function

T T
T f (e, ®) Hor@) ™' T f (us, ),
t=1 t=1

where Hor(¢) is obtained by replacing G, F and H in (9) by
their consistent estimators. The small-sample simulation results
of Lanne and Luoto (2021) suggest the superiority of the two-
step estimator, and we will use it throughout.

2.2. Global Identification

For consistency of the GMM estimator, global identification is
required. There are in total n(n + 1)(n + 2)(n + 3)/24 — n
symmetric and asymmetric co-kurtosis conditions such as
(7) and (8), and Keweloh (2021) indeed claimed that under
Assumption 1 (reinforced by the assumption of mutually
independent structural errors), all of them (in addition to the
unit-variance and zero-correlation conditions) are necessarily
needed for global identification in the GMM estimation of
the SVAR model. However, as we show by a counterexample
below, only a subset of the co-kurtosis conditions suffice to
globally identify B up to permutation and multiplication by
—1 of its columns. That is, in contrast to Keweloh’s claim, all
the conditions in the much larger set that he put forth, are
not necessary for global identification. Our counterexample
involves a bivariate model where the result can be conveniently
shown, but the conclusion should not depend on the dimension
of the model.

Since the ordering and signs of the elements of ¢, are irrele-
vant from the viewpoint of estimating the SVAR model, instead
of the structural errors, it is convenient to work with the vector
of unmixed innovations that we define as

er(A) = Auy, (11)

where A is called the unmixing matrix. When there is no need to
make the dependence of the vector of unmixed innovations on
A explicit, we denote e;(A) by just e;. Because the vector of the
reduced-form errors u; = Be;, e, = B~ u; = &; (the unmixed
innovations equal the structural shocks) if A = B~!. Reordering
the columns of B and multiplying them by —1 only changes the
order of the elements of e; and their signs, respectively. Hence,
the moment conditions (5)-(8) can be written in terms of the
unmixed innovations instead of the structural errors by just
replacing ¢;; and ¢j; by e;r and ejy, respectively.

Proposition 1 demonstrates that if in the bivariate model
(n = 2), we include all but one of Keweloh’s (2021) variance
and co-kurtosis conditions, global identification is still reached.
The omitted co-kurtosis condition is E (eltegt) = 0, but the
conclusion holds for the condition E (e?teZt) = 0 as well.

Hence, while his moment conditions are sufficient, they are not
necessary for global identification. The proof of the proposition
is found in Supplementary Appendix A.

Proposition 1. Let & = (e15,62), wy = (uipuz), & =
(e1r-e)s and e, = Auy. Suppose &; = B~ lu; satisfies Assump-
tion 1, and assume that A in (11) solves the following moment
conditions:

E(ef)—1=0, i=1.2 (12)

E (eyrexr) =0, (13)
E(e%te%t) —-1=0, (14)
E(e},ex) = 0. (15)

Then, under Assumption 1, for some signed (2 x 2) permutation
matrix P, A = PB™!, and hence ¢; = Ps; (given the signs, the
vector of unmixed innovations equals the vector of structural
shocks up to permutation of its rows).

While we are unable to prove global identification under
Assumption 1 when some of the asymmetric co-kurtosis con-
ditions are omitted in the general case with n > 2, this can be
done under the following slightly stronger assumption:

Assumption 2.

(i) The error process & = (&15...,&n) is a sequence of
serially uncorrelated random vectors.

(ii) The components €1y, . . ., &, of & are orthogonal and have
no excess co-kurtosis.

(iii) Each component €;, i = 1,. .., n, has mean zero, variance
unity, and finite third and fourth moments.

(iv) At most one component of & has zero excess kurtosis,
and the excess kurtosis of each of the remaining n — 1
components has the same sign (i.e., these n — 1 shocks are
all either leptokurtic or platykurtic).

Parts (i)-(iii) of Assumption 2 are identical to those of
Assumption 1, whereas part (iv) is replaced by a slightly stronger
yet innocuous assumption that at most one component of &; has
zero excess kurtosis, while the remaining n — 1 components
are all either leptokurtic or platykurtic (i.e., the excess kurtosis
of each of them has the same sign). This assumption does not
seem restrictive because platykurtic structural shocks are highly
unlikely in economic applications, while leptokurtic shocks
abound. In particular, macroeconomic and financial shocks
closely associated with rare disasters such as the COVID-19
pandemic (see, e.g., Woodford 2020; Guerrieri et al. 2020) are
leptokurtic by nature. Macroeconomic shocks are likely to be
leptokurtic even more generally. For instance, when studying
macro risks, Bekaert, Engstrom, and Ermolov (2021) show that
U.S. aggregate demand and supply shocks are leptokurtic. In
the same vein, Brunnermeir et al. (2021) found evidence in
favor of leptokurtic structural shocks in a ten-variable SVAR
model of the US. economy. Furthermore, nonlinear features
of the data can generate leptokurtic shocks in a linear model.
Namely, even if the shocks in a nonlinear dynamic stochastic
general equilibrium (DSGE) model generating the data are
not leptokurtic, nonlinearity tends to increase the kurtosis



of macroeconomic and financial variables far above that of
a Gaussian random variable, which shows up as leptokurtic
shocks in a linear model, such as a linear DSGE or SVAR model
(see, e.g., Andreasen 2012) for results based on a calibrated
DSGE model). Moreover, conditionally heteroscedastic errors
often encountered in macroeconomic and financial applications
exhibit excess kurtosis that has been used in identification of
SVAR models also in the previous literature (see, e.g., Kilian
and Liitkepohl (2017, chap. 14), and the references therein).

Under Assumption 2, we are able to show that »n variance,
n(n — 1)/2 covariance, and n(n — 1)/2 co-kurtosis conditions
of the form E(eiztsjzt) — 1 =0 (i > j) are sufficient for the global
identification of B. In other words, only n> moment conditions
are needed for global identification of the n? elements of B (up
to signs and permutation of its columns). While asymmetric co-
kurtosis conditions of the form E(s?tsjt) = 0 are not needed,
including additional moment conditions does not destroy global
identification. This result is stated as the following proposition
(for a proof, see Supplementary Appendix B):

Proposition 2. Suppose & = B~ lu, satisfies Assumption 2,
and assume that A in (11) solves the following n®* moment
conditions:

E(e)-1=0, i=1,...,n (16)
E(eie) =0, i>j, ij=1,...,n (17)
E(@i@ﬁ)ﬂ:o, i>jij=L...n.  (18)

Then, for some signed (n x n) permutation matrix P, A =
PB~!, and hence e; = Peg; (given the signs, the vector of
unmixed innovations equals the vector of structural shocks up
to permutation of its rows).

Proposition 2 provides one solution to the identification
problem. It states that if the n(n — 1)/2 symmetric co-kurtosis
conditions (18) (in addition to conditions (16)-(17)) are satis-
fied, the unmixed innovations and structural shocks are equal
apart from signs and permutations of the components of &;.
In terms of the computational burden, this result provides a
considerable improvement on Keweloh’s (2021, Proposition 3),
according to which n(n + 1)(n + 2)(n + 3) /24 — n co-kurtosis
conditions (in addition to conditions (16)-(17)) are required
for global identification under nonzero excess kurtosis. For
instance, a five-dimensional SVAR model involves in total as
many as 65 co-kurtosis conditions, while according to Propo-
sition 2, only 10 co-kurtosis conditions are needed to guarantee
global identification. Of course, our result is based on the slightly
stronger assumption that structural shocks must all be either
leptokurtic or platykurtic, but as discussed above, at least in
macroeconomic and financial applications it is hard to imagine
a platykurtic structural shock, so that this assumption can quite
safely be assumed to hold.

2.3. Statistical Inference

In order to conduct statistical inference on the two-stage estima-
tor ¥, we need to show its consistency and find its asymptotic
distribution. When the global identification result in Proposi-
tion 2 holds, under standard regularity conditions, including
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strict stationarity and ergodicity, and mild technical conditions
concerning the GMM objective function Qr (), the parameter
space @ C RK (k = n?) and the weighting matrix Wr, the
GMM estimator  is consistent for any fixed signed permutation
matrix P (see, e.g., Dovonon and Hall 2018, Proposition 1).

Unfortunately, moment conditions (16)-(18) are not, in gen-
eral, sufficient to establish the asymptotic normality of the GMM
estimator because they do not guarantee the expectation of the
Jacobian matrix J7(9%0) = df (ur, ¥)/39 |p—p,, evaluated at 9y,
the true value of ¥, to be of full column rank #n? (see, eg.,
Hall (2005, chap. 3.4.2) for a discussion on this requirement).
However, although this standard condition of first-order local
identification fails, Dovonon and Hall’s (2018) condition for
second order local-identification holds (for a proof, see Supple-
mentary Appendix C), and, thus, their Theorem 1 could be used
to establish the asymptotic distribution of the GMM estimator.
That result is, alas, in practice rarely useful in our setup because
they concentrate on the only analytically tractable case where
the rank of the expectation of Jr () is reduced by one, and
with moment conditions (16)-(18), this additional condition is
satisfied only in a bivariate SVAR model.

In view of the latter conclusion, we turn to finding sets of
moment conditions that guarantee both global and first-order
local identification, and, thus, asymptotic normality. According
to Proposition 2, conditions (16)-(18), potentially augmented
with a number of asymmetric co-kurtosis conditions, suffice for
global identification. On the other hand, according to Proposi-
tion 1 of Lanne and Luoto (2021), conditions (16)-(17) coupled
with n(n — 1)/2 asymmetric co-kurtosis conditions are, in
general, sufficient for local identification. Based on their idea, it
can be shown that first-order local identification is achieved by
augmenting conditions (16)-(18) with n(n — 1)/2 asymmetric
co-kurtosis conditions. Because including additional asymmet-
ric co-kurtosis conditions does not destroy global identification,
global and first-order local identification are achieved by aug-
menting conditions (16)-(18) with n(n — 1)/2 asymmetric co-
kurtosis conditions, as stated in the following Proposition 3 (for
a proof, see Supplementary Appendix D):

Proposition 3 (Global and first-order local identification). Sup-
pose all n components of &; have positive (or negative) excess
kurtosis. Then moment conditions (16)-(18), and n(n — 1)/2
asymmetric co-kurtosis conditions of the form E(e?tejt) =0
(i # j) suffice to globally and locally identify B characterized
by a given permutation and signs of its columns. If one of the
components of &; has zero excess kurtosis, the asymmetric co-
kurtosis conditions must not involve its third power.

The augmented set comprises 7% +n(n—1) /2 moment condi-
tions, which is more than consistency calls for, but still consider-
ably fewer than required by Keweloh’s (2021, Proposition 3). For
instance, in a five-dimensional SVAR model, the total number of
moment conditions required is 35, while according to Keweloh,
80 conditions are needed.

When the assumptions of Proposition 3 hold, the first-order
local identification condition that rank{E[Jr(99)]} = n? is
satisfied. However, if one of the components of & has zero
excess kurtosis, the locally identifying asymmetric co-kurtosis
conditions must be such that they do not involve its third
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power. Nevertheless, it is straightforward to show that first-
order local identification can be achieved by a suitable selection
of asymmetric co-kurtosis conditions even if any one of the
shocks is Gaussian. In practice, it is virtually never known
whether one of the structural shocks is Gaussian, and therefore,
in Section 2.5, we propose a procedure, based on a well-known
moment selection criterion, to find the optimal set of moment
conditions among the sets of n?+n(n—1)/2 moment conditions
that guarantee global and first-order local identification.

It is important to realize that Proposition 3 only applies to a
given SVAR model characterized by a given ordering and signs
of the columns of B. In particular, if one permutation of the
columns of B asymptotically satisfies the moment conditions,
so do all permutations. Thus, in order to facilitate standard
asymptotic inference, additional restrictions are needed to
pinpoint a particular permutation (and signs) of the columns.
These restrictions are not really restrictive, however, because
any permutation of the columns of B produces the same shocks
(reordered) and impulse responses. To this end, there are many
alternative restriction schemes entertained in the previous
literature on statistical identification that could be employed
(see Lanne, Meitz, and Saikkonen (2017), and the references
therein). In this article, we use the permutation convention of
Pham and Garat (1987) which entails picking the permutation
that maximizes the absolute value of the product of the diagonal
elements of B, and restricts the diagonal elements of B positive.

As already discussed, under standard regularity conditions,
including strict stationarity and ergodicity (see, e.g., Hall 2005,
chap. 3 and 5.3), in addition to global identification, the GMM
estimator z§‘T is a consistent estimator of . This holds for all
two-step, iterated and continuous updating GMM estimators
that are asymptotically equivalent although they may behave
differently in finite samples. Moreover, when also the condition
of local identification is satisfied, the efficient GMM estimator
is asymptotically normally distributed with covariance matrix
[GgH()_lGla]_l, where Gy = E [af(u‘;%], and Hy is given
in (9) (see Supplementary Appendix E for details). Because the
SVAR model is statistically identified, additional restrictions on
the elements of B can be tested by standard Wald and likelihood
ratio (LR) type tests, once Gy and Hy are replaced by their con-
sistent estimators. However, it must be borne in mind that any
test on the parameters of the impact matrix only pertains to the
particular ordering of its columns. Therefore, any hypothesis on
the parameters is, in general, meaningful only once the shocks
pertaining to those parameters have an economic interpretation
(see the empirical example in Section 4).

2.4. Joint GMM Estimator

So far, we have considered the two-stage GMM estimator,
where the impact matrix B is estimated based on the residuals
of the reduced-form VAR(p) model. An alternative to the
two-stage estimator, feasible in models involving a small
number of variables in relation to the number of observations,
is to estimate v, Aj,...,Ap, and B jointly by augmenting
the set of moment conditions discussed above by E[e; ®
Ly, ,y;_pﬂ)/] = 0. Also in this case, any one of the
two-step, iterated and continuous-updating estimators can be

employed. The theoretical results derived for the two-stage
estimator generalize in a straightforward manner to cover
this case. In particular, the conditions for local and global
identification of B in Sections 2.2 and 2.3 do not depend on
whether all parameters are estimated jointly or in two stages.
In our empirical application involving only bivariate models in
Section 4, we estimate all the parameters of the SVAR model
jointly.

The joint GMM estimator of ¢ = vec(n’,?’) where 7 =
vec(v, Ay, ..., Ap) and ¥ = vec(B), is consistent and asymptot-
ically normally distributed:

T'V2(¢ — fr) > N0, ), (19)

where € and its consistent estimator 7 are obtained as above
by replacing ¥ by ¢ and 91 by ér in the expressions above.
This follows from the fact that 7 is asymptotically normal when
f(ug(), 9) contains the augmented set of the n(n — 1)/2 + n?
moment conditions. Because the global and local identification
results in Propositions 2 and 3 hold for any u; = y; — v —
Aryi—1—- - -—Apyr—p, also the GMM estimator of ¢ based on the
condition E[&; @ (1,;_, .. . ,y;_pH)/] = 0 in addition to those
discussed in Section 2.3 is asymptotically normally distributed.

Finally, the efficient estimator with minimum asymp-
totic variance is obtained by setting the weighting matrix
W in GMM estimation at S~!, the inverse of the long-
run covariance matrix of the moment conditions, § =

limr_, sovar [Tl/2 <T‘1 Zthlf(ut(no), 190))] The latter is

estimated consistently by (10), where fi is a consistent estimator
of I';, the ith autocovariance matrix of f (¢ (7r9), D).

2.5. Moment Selection

While Propositions 2 and 3 imply global and first-order local
identification when the set of moment conditions contains n(n—
1)/2 asymmetric co-kurtosis conditions of the form E (e?tejt) =
0 (i # j) in addition to conditions (16)-(18), they provide no
guidance on selecting the asymmetric co-kurtosis conditions
to include. However, the number of different combinations of
n(n — 1)/2 asymmetric co-kurtosis conditions is large and
increasing rapidly in n. As a matter of fact, there are n(n —
D!/{[n(n — 1)/2]'}* such combinations, and they are not all
likely to be equally informative for the parameters of interest.
Therefore, it is desirable to be able to select the combination that
is the most informative and agrees with the data. To this end, we
suggest using the relevant moment selection criterion (RMSC)
of Hall et al. (2007), and using Hansen’s (1982) well-known ] test
of over-identifying restrictions as a diagnostic check to confirm
the accordance of the selected moment conditions with the data.
The RMSC for the joint GMM estimator of ¢ = vec(n’, 9')’

is given by
RMSC(e) = In(det[ V5 ()] +(q—k)In[(T/br)/*1(T/br) ~"/2
(20)

where the sets of asymmetric co-kurtosis conditions are indexed
by ¢, Vq; r(c) is a consistent estimator of the covariance matrix

(Gé)S_lGo)_1 of the GMM estimator ¢, Gy = E[r(¢o)],
and $= limq—o var [ TV2 (70 L0, flui(0), 90)) |- The



RMSCs can be computed for the two-stage estimators analo-
gously (with obvious modifications). The bandwidth parameter
bt of the gHAC estimator accounts for its rate of convergence.
The value of the RMSC based on each set of moment conditions
is computed, and the set minimizing it (or equivalently
maximizing estimation accuracy) is selected. It is important
to use Pham and Garat (1987) permutation convention or
an analogous procedure to fix the order and signs of the
elements of the structural error vector &;, so the same SVAR
model is estimated in each case. In small samples, the GMM
estimate depends on the particular moment conditions selected
although, in our experience, the estimates are quite robust
with respect to the particular moment conditions. However, as
pointed out by Hall (2005, chap. 7), under general conditions,
including global identification, using the RMSC to select
the most informative moment conditions does not affect the
asymptotic properties of the GMM estimator.

It should be borne in mind that if the ith shock has zero
excess kurtosis, and only n(n — 1)/2 asymmetric co-kurtosis
conditions are entertained, then for the sets of moment condi-
tions containing the condition E (e?tejt) = 0, rank(E[J7(¢g)]) <
n(np 4+ 1) + n?, implying that GoS™' Gy is noninvertible (see,
e.g., result 3.19 of Seber 2008). We therefore recommend cal-
culating det(ng,T) = (det[GT(qAS)’S;lGT(QAS)])’1 instead of
det([GT(é)/SEIGT(qg)]_l), where GT((;Q) and S are the consis-
tent estimators of Go and S, respectively. If G (¢A>) is near rank-
deficient for some set of moment conditions, then the corre-
sponding value of (det[GT((;AS)’g}1 GT(qS)])_1 is very large, and,
asaresult, the set should not be selected (at least asymptotically).
That is, we expect to find the minimum of the RMSC among the
first-order locally identifying sets. A similar remark applies to
the two-stage GMM estimators.

Estimating the model based on all n(n —1)!/{[n(n— 1)/2]')?
combinations of n(n — 1)/2 asymmetric co-kurtosis conditions
can be computationally burdensome if the dimension of the
model 7 is large. For instance, with n = 4, there are already 924
such combinations. Hence, in the case of a high-dimensional
model, a viable alternative is to use all #(n — 1) asymmetric co-
kurtosis conditions in estimation. Notice that even ifall n(n—1)
asymmetric co-kurtosis conditions of the form E (e}ej;) = 0
(i # j) are entertained, the augmented set comprises only
n* 4+ n(n — 1) moment conditions, which is considerably fewer
than required by Keweloh’s (2021, Proposition 3). In a five-
dimensional SVAR model, for instance, the total number of
moment conditions required is 45, while according to Keweloh,
80 conditions are needed (in a 10-dimensional model, the cor-
responding figures are 190 and 760, respectively).

As already discussed, we recommend checking the moment
conditions by Hansen’s ] test of over-identifying restrictions that
follows the x? distribution with n(n — 1)/2 degrees of free-
dom under the null hypothesis. If it rejects, the set of moment
conditions producing the second smallest value of the RMSC is
considered next, and this is repeated until an acceptable set of
moment conditions is found. Checking for misspecification by
the J test prior to conducting tests on the elements of B is impor-
tant because standard Wald and LR type tests have also power
against misspecification, as shown by Hall and Inoue (2003).
Therefore, they may reject because the moment conditions are
violated even if the restrictions actually being tested hold.
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2.6. Impulse Response Analysis

Once the model has been estimated, the effects of the structural
shocks can be studied by means of impulse response analysis
in the usual way. Impulse responses are obtained based on the
moving average (MA) representation of y;,
oo
ye=pn+ Z CkBei—ks 21)
k=0
where 1 is the unconditional expectation of y;, Cy is the identity
matrix, and Cy, k = 1,2,..., are obtained recursively as Cy, =
25{:1 Ci—1A; by setting Ay = 0 for k > p. The jth column of
CiB, k = 0,1,..., contains the impulse responses of the jth

structural shock ¢jr, j = 1,...,n, and its (i,j) element is the
response of y; ;1 to a one-unit change in ¢j;. That is,
a .
[CkBly = 2k (22)
88jt

with ¢; the ith unit vector. We denote this structural impulse
response coefficient by Ay ;;(, 1), where 7 = vec(v, Ay, ...,
Ap) and ¥ = vec(B). Thus, in the notation A ; ;(7, 1), we ignore
the fact that (22) does not depend on the parameter vector v.
A consistent estimator of Ag;;(7, 1), denoted by )A\k,i,j(ft, D), is
obtained by replacing 7 and ¥ by their consistent estimators, 7
and ¥, respectively.

In order to compute the confidence intervals of the impulse
response functions Ay ;;(7r, ), we derive their asymptotic dis-
tribution, and to that end, following Montiel Olea, Stock, and
Watson (2021), we use the delta-method. Let us first consider the
case where all the parameters of the SVAR model are estimated

jointly. It was shown in Section 2.4 that TY/2 (¢ —qg) —d> N(0, 2).
Hence, a delta-method calculation yields

N oA d
T2 [0 (R, 9) = diig(r, 1)1 = N(O,0F, ), (23)

where
02 _ a)»k,i’j(T[, 19) 8)‘1(,1‘,]'(”’ 19)
kij — !, ) A, vy .
The asymptotic confidence interval of A ;;(;r, ) is obtained by
replacing ¢, m and 2 by their consistent estimators. Alterna-
tively, a suitable bootstrap procedure can be employed.

Result (23) applies also when the two-stage estimation pro-
cedure is used, where 7 is first estimated by OLS and ¢ then by
the GMM based on the OLS residuals. However, in that case,
is given by

o=

ylF'eL —F'e Iy Ty
0 —W'Gyly;

F'®I, 0
Iy (F'®1L) —I;GyW

} (29

where Iﬁﬂ = G;; WG@, Iﬁn = G;; WG;-[, Gﬁ =E [W],

Gy =E W],F:E(Zt_lzg_l) with Z, = (Lyl...,

Yi—p+1)»and H is the long-run covariance matrix of all moment
conditions (see Supplementary Appendix E for details). A con-
sistent estimator of €2 is obtained by replacing Gy, G, F, and H
by their consistent estimators.
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3. Simulation Results

In order to gauge the properties of the GMM estimator in
finite samples, we conduct a small Monte Carlo simulation
experiment. In particular, we are interested in finding out about
the potential effects of relying on fewer asymmetric co-kurtosis
conditions (either given or selected by the RMSC) than recom-
mended by Keweloh (2021). To facilitate comparison the results
in the previous literature, we generate data from the bivariate
SVAR(0) model also considered by Gouriéroux, Monfort, and
Renne (2017) and Keweloh (2021):

¥yt = Bey,

where B is an orthogonal matrix dependent on a single param-

eter, that is,
sin(0)
cos(6)
with 8 = —m /5.

Because all elements of B depend only on 6, it suffices to
concentrate on the estimates of just one element, say B;; =
cos(—m/5) =~ 0.809. We consider two cases: one where both
independent elements of &, follow Student’s ¢ distribution with
12 degrees of freedom, and another where they are #(48)-
distributed. The error terms are standardized to have variance
unity. In both cases, B is identified, but with the greater
degree-of-freedom parameter, the error distribution is closer
to normality, which is expected to show up as a deteriorating
performance of the GMM estimator.

We report results based on three different kinds of sets of
moment conditions, all of which contain the following condi-
tions: E(s%t) = E(s%t) = 1, E(g11&2;) = 0, and E(e%tsgt) = 1.
In addition, the first set contains both asymmetric co-kurtosis
conditions, E(sftb‘y) = 0 and E(eltsgt) = 0, while the second
set contains only the latter. Finally, in the third set, either one of
the asymmetric co-kurtosis conditions is selected by the RMSC.
In view of the simulation results of Lanne and Luoto (2021), only
results based on the two-step GMM estimator are reported.

The averages of bias and standard deviation of the GMM
estimate of By; and the rejection rate of the nominal 5%-level
J-test are reported in Table 1 for samples of 250, 500, and 1000
observations. Recall that B is identified only up to permuta-
tion and multiplication by —1 of its columns. Therefore, the
estimator of By; may estimate either By, —Bi1, Bi2 or —Bia,
and the measures of bias and standard deviation are based
on a transformation of the estimate of B;; that is closest to
the true value of Bj; (minimizing the squared deviation; see,
Gouriéroux, Monfort, and Renne 2017, sec. 2.7).

In estimation, the true values of the parameters were used as
initial estimates. However, to find out whether the performance
of the estimator depends on the initial estimate, we also esti-
mated By; using a large grid of all permissible values of cos(6),
and found no indication of the deterioration of the finite-sample
performance of the estimator based on a subset of Keweloh’s
(2021) co-kurtosis conditions; the behavior of estimators com-
pared was actually very similar.

As expected, bias and standard deviation systematically
decrease with increasing sample size irrespective of the
asymmetric co-kurtosis conditions included when the errors

_{ cos(0)
B= (—sin(@)

Table 1. Simulation results of the two-step GMM estimator of the SVAR(0) model.

Asymmetric DF =12 DF = 48
T Co-Kurtosis conditions Bias  Std. Jtest Bias Std. Jtest
E(s?tsn) = E(€1r€gt) =0 0.039 0.100 0.098 0.067 0.101 0.052
250 E(snegt) =0 0.041 0.095 0.051 0.059 0.098 0.038
Selected by RMSC 0.039 0.095 0.058 0.060 0.098 0.048
E(e3,e90) = E(eqre3,) =0 0023 0083 0.098 0065 0.094 0.044
500 E(s”sgt) =0 0.029 0.083 0.052 0.060 0.092 0.034
Selected by RMSC 0.027 0.084 0.054 0.064 0.093 0.035
E(s?tszr) = E(€1t€§t) =0 0.007 0.069 0.106 0.062 0.092 0.041
1000 E(s”egt) =0 0.013 0.074 0.054 0.058 0.089 0.029
Selected by RMSC 0.013 0.074 0.053 0.061 0.090 0.031

NOTE: The results for the two-step GMM estimator is based on 5000 simulated
samples of T = 250, 500, and 1000 observations. The components of the error
term &r = (&1, 62¢)’, are first generated from independent t distributions with
12 and 48 degrees of freedom (DF). The errors are centered and standardized to
have variance unity. Then the data y; are computed from y; = Bet, where the
entries of Bare By1 = cos(0), B = sin(6), By1 = —sin(#), and By, = cos(6)
with® = —/5.In addition to the asymmetric co-kurtosis conditions listed in the
second column, in each case, the set of moment conditions contains the following
conditions: E(s%r) = E(s%t) = 1,E(e1tear) = 0,and E(s%tsgt) = 1.In both
panels, columns labeled “Bias” and “Std." contain the average bias and standard
deviation of the GMM estimate of B11, respectively. The column labeled “J test”
contains the rejection rate of the J-test of over-identifying restrictions at the 5%
nominal significance level.

follow the #(12) distribution. Moreover, the differences with
respect to the set of moment conditions are minor. In all cases,
the GMM estimator is less accurate when the errors follow
the less leptokurtic #(48) distribution. Indeed, in this case, the
simulated bias does not decrease, and compared to the case of
t(12)-distributed errors with strong identification, the simulated
standard deviation hardly decreases with the sample size. These
findings are a manifestation of lack of point identification when
the error terms only slightly deviate from normality.

Interestingly, the rejections rates of the J-test vary con-
siderably across the sets of moment conditions, with either
the set containing only the asymmetric co-kurtosis condition
E(sltegt) = 0 or co-kurtosis conditions selected by the RMSC
in all cases being the winner when the errors follow the #(12)-
distribution, while in the case of both co-kurtosis conditions
included, the test strongly over-rejects. When identification is
weaker with the errors following the #(48)-distribution, the J-
test is clearly undersized in the first two cases, which is expected
in correctly specified unidentified models.

All in all, the simulation results indicate that in terms of
estimation accuracy, it is not necessary to include all asymmetric
co-kurtosis conditions in the GMM estimation, and the RMSC
works quite well. Moreover, when identification is strong, the J-
test clearly over-rejects if all asymmetric co-kurtosis conditions
are included, while its empirical size quite closely corresponds
to its nominal size.

4. Empirical Application

We illustrate the methods in an empirical application to
the effect of a tax increase on the US. monthly gasoline
consumption, with the ultimate goal of estimating the effect
of a gasoline tax increase on carbon dioxide (CO,) emissions.
In particular, we consider Davis and Kilian’s (2011) bivariate
SVAR specification containing the percent change in the real



gasoline consumption (Ax;) and the percent change in the
inflation-adjusted gasoline tax (Atax;). Davis and Kilian (2011)
considered also a model for after-tax price of gasoline and the
percent change in the real gasoline consumption that provides
a crude estimate of the response of gasoline consumption to a
tax increase. However, because the response of consumption to
a price change due to a tax increase is probably different from
that due to other reasons, the specification for (Atax;, Ax;)
considered here is likely to yield a more direct estimate of the tax
elasticity. Nevertheless, it should be pointed out that by relying
on this simple bivariate model, we abstract from changes in
gasoline storage (see, Coglianese et al. 2017). The series cover
the period from January 1989 to March 2008. (For a detailed
discussion of the variables, see Davis and Kilian (2011). The data
were downloaded from http://qed.econ.queensu.ca/jae/2011-
v26.7/davis-kilian/.)

The starting point of the analysis is the following stylized
structural model

Atax; = o Ax; + €1
Axy = BAtaxy + €y

with 8 the tax elasticity of interest. Here £1; and &,; are mutually
orthogonal structural errors that have no excess co-kurtosis.
This structural model is a special case of the more general
SVAR(p) model in (3) with y; = (Atax;, Ax;)" and

1 —o
Aoz[_ﬂ 1}.

In order to estimate the effect of a tax increase on gasoline
consumption, we need to identify a shock that has a positive
effect on tax and a negative effect on consumption on impact,
assuming gasoline is a normal good. To that end, Davis and
Kilian (2011) (DK henceforth) ruled out the contemporaneous
feedback from Ax; to Atax; by setting « = 0, such that only
€1t can be the desired shock. DK were unable to test this iden-
tification restriction, but in our setup, it is an over-identifying
restriction, and hence, testable conditional on the maintained
assumptions.

Following DK, we start by estimating a reduced-form
VAR(12) model with an intercept and seasonal dummies for
(Ataxs, Axy)'. For identification, non-Gaussianity of at least
one of the structural errors is crucial, and because the structural
errors are linear combinations of the reduced-form residuals,
this condition is satisfied if at least one of them is non-Gaussian
in the bivariate model. To check for their normality, we employ
the bootstrap version of the Jarque-Bera test for VAR models
proposed by Kilian and Demiroglu (2000) with 10,000 bootstrap
replications to construct the bootstrap critical values. The null
hypothesis of joint normality of the residuals is rejected at the
1% significance level based on the empirical distribution of the
Jarque-Bera test statistic. This suggests non-Gaussianity of the
reduced-form residual series, and, hence, lends strong support
to the necessary condition for identification.

In order to find the optimal set of moment conditions, we
estimate the parameters of the SVAR(12) model (3) using the
different combinations of the n(n — 1)/2 4+ n? conditions dis-
cussed in Section 2.5. All parameters are estimated jointly, so
we also include the orthogonality conditions E[g; ® Z;—1] = 0,
where Z;_; contains the lagged variables as well as an intercept
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Figure 1. Impulse responses of U.S. aggregate gasoline consumption to a positive
gasoline tax shock. The dotted and dashed lines are, respectively, the 95% and 68%
confidence bands obtained by the delta-method.

term and seasonal dummies. In all cases, conditions (16)—(18)
are included, and the most informative combination of the
n(n — 1)/2 asymmetric co-kurtosis conditions is selected by the
RMSC.

The asymmetric moment condition minimizing the RMSC
is E(sft(szf) = 0, and the p-value of the related J-test is 0.43.
We also estimated the parameters of the SVAR(12) model using
both asymmetric co-kurtosis conditions, with only a marginal
change in the parameter estimates. For the latter set of moment
conditions, the value of the RMSC is slightly higher than that
based on E(slteg‘t) = 0 only. The GMM estimates of « and § are,
respectively, 0.07 (0.037) and -0.19 (0.037), where the figures in
parentheses are asymptotic standard errors. DK identified the
model by setting « = 0, and according to the asymptotic Wald
test, this restriction cannot be rejected at 5% significance level
(the p-value is 0.065). The estimate —0.19 of B is close to DK’s
estimate of —0.14.

In line with these estimates, &1, turns out to be the only shock
having impact effects on consumption and taxes of opposite
signs (the first column of the inverse of estimated Ay matrix
is (0.99,—0.19)’), and following DK, we label it the gasoline
tax shock. The impulse responses of a positive gasoline tax
shock causing a 1% tax increase on impact along with the
95% and 68% confidence bands based on the delta-method are
depicted in Figure 1. The asymptotic covariance matrix €2 of the
joint GMM estimator of ¢ = vec(n’,¥’) is estimated using
the Newey-West HAC estimator with the automatic bandwidth
selection procedure proposed by Newey and West (1994). Our
impulse response function resembles that of DK’s, which is
not surprising given that the data lend support to their iden-
tification restriction. In particular, we also find a significant
impact effect (albeit somewhat greater than DK’s estimate), and
impulse responses that are insignificant up to the seven-month
horizon. Following Montiel Olea, Stock, and Watson (2021), we
also considered a bootstrap-like method, where the empirical
distribution of )A»k,,'(ﬁ, ) is obtained using an estimated normal
distribution of ¢ (recall that ¢ = (#/,d") is asymptotically
normally distributed). The results remain intact irrespective of
the method used.
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Table 2. The predicted effect of a 10-cent gasoline tax increase on gasoline con-
sumption and CO; emissions based on the 12-month tax elasticity (%).

Gasoline consumption —2.63(1.71)
CO; emissions in the United States —0.89(0.58)
CO; emissions in the OECD —0.40(0.26)
CO; emissions worldwide —0.19(0.12)

NOTE: The figures in parentheses are standard errors.

4.1. Policy Implications

In this section, we report estimates of a gasoline tax increase
on gasoline consumption and carbon dioxide emissions. To
facilitate comparison, we follow DK in computing the predicted
percent change in consumption by multiplying the estimated
12-month tax elasticity —0.10 by a given relative tax increase (a
change of tax divided by the mean tax level in cents)

T
~0.10 (—) 100.
tax

The tax elasticity —0.10 is the estimated 12-month impulse
response depicted in Figure 1. We then evaluate the effects for a
10-cent tax increase (t = 10) at the mean volume-weighted tax
level of 38.4 cents (tax = 38.4) in March 2008. A tax increase
of this size lies well within the normal historical range. The
estimated effect on gasoline consumption, reported on the first
row of Table 2 is of similar magnitude as that of DK.

Following DK, the estimated changes in the CO, emissions
for the U.S. are obtained by multiplying the estimated change
in gasoline consumption by 0.338, the assumed share of carbon
dioxide emissions derived from the transportation sector. The
estimates for the OECD and the world are obtained by assuming
that the U.S. represents 44.7% of total OECD CO; emissions and
21.0% of world emissions. DK report only estimates based on
instrumental variables regression on state-level panel data, but
they are not that different from ours.

5. Conclusion

In this article, we have revisited GMM estimation of the SVAR
model by moment conditions implied by the assumption
commonly made in the statistical identification literature that at
most one of the structural errors is Gaussian. Our new results
complement those of Lanne and Luoto (2021) and Keweloh
(2021). In particular, we have shown that not all of Keweloh’s
moment conditions are necessarily needed for global and local
identification, while the moment conditions of Lanne and Luoto
only suffice for local identification. By slightly modifying the
common assumption of at most one Gaussian structural error,
we have derived the necessary and sufficient condition for
global and local identification. Under the modified assumption,
all but one of the structural errors are either leptokurtic or
platykurtic, which is innocuous from the practical point of
view as platykurtic shocks are extremely unlikely to occur in
economic applications. Our set of moment conditions is smaller
than that required by Keweloh’s result, which is likely to be
important in models where the number of variables relative to
the sample size is large.

We have also relaxed the assumptions of mutually indepen-
dent structural errors made in much of the previous literature,

including Keweloh (2021). The independence assumption is
problematic in that it may not be possible to obtain such
errors as linear transformations of the reduced-form residuals,
as pointed out by Kilian and Liitkepohl (2017, chap. 14).
Instead, we show that identification is achieved under the
milder assumption that the structural errors exhibit no excess
co-kurtosis. In addition, we assume the error term to be only
serially uncorrelated, not independent in time, which allows its
components to follow univariate conditionally heteroscedastic
processes.

If the SVAR model is large, GMM estimation of all the
parameters simultaneously may not be feasible. To that end,
we have proposed a two-stage estimator, where estimation of
the impact matrix is based on reduced-form residuals obtained
by OLS estimation, and derive its asymptotic distribution. We
have also derived the asymptotic distribution of the impulse
response function based on both the simultaneous and two-
stage estimators.

According to a small simulation experiment, the accuracy
of the GMM estimator based on the reduced set of moment
conditions is comparable to that based on the full set of moment
conditions suggested by Keweloh (2021). Moreover, with the
reduced set of moment conditions, the rejection rate of the J-test
of over-identifying restrictions is found to closely correspond to
its nominal size, while with the full set of moment conditions,
the test tends to severely over-reject. This finding is important
since the J-test plays a central role in our procedure for selecting
the optimal set of moment conditions.

We have illustrated the use of the methods in an empiri-
cal application to the effect of a tax increase on U.S. gasoline
consumption and CO, emissions. We were unable to reject the
identification restriction imposed by Davis and Kilian (2011)
at the 5% significance level. Consequently, our estimates of the
effects of the tax increase turned out to be quite close to those in
Davis and Kilian.

Here we concentrate on the case where the SVAR model
is completely statistically identified when at most one of the
structural errors is Gaussian, while the rest are leptokurtic (or
platykurtic). However, in economic applications, more than one
of the shocks may be Gaussian, and it seems that in such a case,
some of the shocks may still be statistically identified. In the
related literature, the latter case of partial identification has been
entertained by Guay (2021), and Bertsche and Braun (2022), and
our framework should also lend itself to a similar extension. We
leave this issue for future research.

Supplementary Materials

The online supplement comprises six appendices. Appendices A, B and D
contain the proofs of Propositions 1, 2 and 3, respectively. In Appendix C,
second-order local identification of the contemporaneous impact matrix
of the SVAR model under the conditions of Proposition 2 is shown. In
Appendix E, the asymptotic distribution of the two-stage estimator of the
SVAR model is derived. Finally, Appendices F and G contain auxiliary
results needed in the proofs of Propositions 1, 2 and 3. The data and code
for all computations are available via the online supplement.
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