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Abstract

We show that all shocks in an n-dimensional structural vector autoregression (SVAR)

are globally identified up to their order and signs if they are orthogonal and either (i)

have zero co-skewness and at most one of them is not skewed or (ii) exhibit no ex-

cess co-kurtosis and at least n − 1 of them are leptokurtic. The former case covers

SVAR models with errors following dependent volatility processes. Moreover, if the

numbers of both skewed and leptokurtic shocks are smaller than n − 1, the skewed

and leptokurtic shocks are globally identified, while the remaining shocks are set iden-

tified. To capture the non-Gaussian features of the data, versatile error distributions

are needed. We discuss the Bayesian implementation of an SVAR-GARCH model with

skewed t-distributed errors, including the assessment of the strength of identification

and checking the validity of exogenous instruments potentially used for identification.

The methods are illustrated in an empirical application to the oil market.
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1 Introduction

The structural vector autoregressive (SVAR) model facilitates the analysis of economic phe-

nomena by studying the dynamic effects of economic shocks on the variables included. The

starting point of the analysis is a reduced-form vector autoregression (VAR) on which var-

ious restrictions are imposed to identify the economic shocks of interest. In addition to

using restrictions derived from economic theory or institutional knowledge to identify the

structural shocks, it has become increasingly common to exploit the statistical properties

of the data, such as heteroskedasticity or non-Gaussianity, in identification (see, e.g. Kilian

and Lütkepohl (2017, Chapter 14) for a survey of this literature). In the latter case, eco-

nomic intuition is still needed in labeling the shocks, that is, in giving them an economic

interpretation, as they are statistically identified only up to their ordering and signs (or

equivalently, the impact matrix of the SVAR model is identified up to permutation and signs

of its columns).

In the case of non-Gaussianity, the shocks are typically assumed mutually independent

in the statistical identification literature (see Lanne et al. (2017), Herwartz (2018), and

Keweloh (2021), among others). This assumption is more restrictive than the orthogonality

assumption prevalent in most of the SVAR literature. In particular, as argued by Montiel

Olea et al. (2022), it precludes dependent conditional heteroskedasticity of the shocks, while

it is likely that they, to some extent, share a common source of economic volatility. Moreover,

as pointed out by Kilian and Lütkepohl (2017, Chapter 14), independent structural errors

cannot always even be obtained as linear transformations of the residuals of a reduced-form

VAR model. Hence, assuming independence may be more restrictive than appears at first

sight.

To the best of our knowledge, the independence assumption in non-Gaussian SVAR

models has not been relaxed in the previous literature apart from a number of recent attempts

concerning the generalized method of moments (GMM) estimation. Guay (2021) introduces

a GMM estimator based on all co-skewness and/or all co-kurtosis conditions. Local, but not

global, identification is achieved when at most one shock is symmetric and/or has no excess

kurtosis and the shocks exhibit no excess co-kurtosis. In addition, he puts forward partial

local identification results. While these conditions render the shocks nearly independent,
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Lanne and Luoto (2021) narrow down the set of co-kurtosis conditions needed for local

identitification to a relatively small subset of the asymmetric co-kurtosis conditions. Lanne,

Liu and Luoto (in press) show that if the shocks exhibit no excess co-kurtosis and all but

one of them are leptokurtic, n(n − 1) co-kurtosis conditions, half of which are symmetric

and another half asymmetric, suffice for local and global identification in GMM estimation

of an n-dimensional SVAR model. Moreover, Mesters and Zwiernik (2022) establish a full

identification result similar to the result of Guay (2021) using a different proof strategy, while

Velasco (2023) shows global and local identification under independence up to third and/or

fourth moments in the structural vector autoregressive moving average (SVARMA) model

in the frequency domain. Mesters and Zwiernik (2022) also relax some of the restrictive

assumptions in Guay (2021) to show identification even in cases where the errors share a

common stochastic variance.

In this paper, we introduce a number of general full and partial identification results, not

just pertaining to GMM estimation. In particular, we show that if the shocks are orthogonal,

have zero co-skewness and at most one of them is not skewed, they are all globally identified.

Moreover, if there are fewer skewed shocks, they are globally identified, while the remaining

shocks are not identified (or, in other words, are only set identified). In the same vein, global

identification is achieved if the shocks exhibit no excess co-kurtosis and at least all but one of

the orthogonal shocks are leptokurtic (or feature persistent conditional heteroskedasticity).

Again, if fewer shocks are leptokurtic, only these shocks are globally identified. The results

pertaining to leptokurtic shocks equivalently apply to platykurtic shocks, which, however,

are expected to be rare in economic applications.

Our full identification results parallel the corresponding results for independent non-

Gaussian shocks in the previous literature (see, e.g., Lanne et al. (2017)), while, to our

knowledge, similar partial identification results have not been presented previously. The

partial identification results also facilitate making simultaneously use of both skewness and

excess kurtosis of the structural shocks in identification. In particular, in the case of zero

co-skewness and no excess co-kurtosis, the symmetric and leptokurtic as well as the skewed

shocks are globally identified, while the remaining shocks are not identified.

We also contribute to the literature on identification of SVAR models using exogenous
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instruments, or proxy variables, for structural shocks. Even if identification is statistically

achieved, it can be strengthened by instruments, and they may also be useful in labeling

the structural shocks. However, instruments must be valid, and checking for this is straight-

forward under statistical identification. To be valid, such instruments, or proxy variables,

must be relevant, i.e., correlated with the shock that they are instrumenting, and exog-

neous to the remaining shocks. Validity checks also help to find the shock of interest and

to label it accordingly. Our approach is akin to those of Schlaak et al. (2023), and Braun

and Brüggemann (2022), who consider indentification by a combination of heteroskedasticity

and external instruments, and a combination of sign restrictions and external instuments,

respectively. It extends the method of Schlaak et al. (2023) to the case of non-Gaussian

shocks, and compared to Braun and Brüggemann (2022), it avoids using (potentially incor-

rect) economically (as opposed to statistically) motivated restrictions for identification prior

to checking for the validity of instruments.

To efficiently capture non-Gaussian features of the data, it is important to use versatile

error distributions in empirical analysis. In this paper, we consider the skewed t-distribution,

which nests the Gaussian distribution in the limit, and hence, facilitates checking for iden-

tification by skewness and excess kurtosis in a straightforward manner. To avoid misspecifi-

cation and to potentially strengthen identification, we recommend checking for the presence

of conditional heteroskedasticity, and if detected, explicitly incorporating it into the model.

Because of the complexity of the SVAR specification, we recommend using Bayesian meth-

ods because, as pointed out by Anttonen et al. (2023), Bayesian inference remains valid

even if some of the shocks (or equivalently, some columns of the impact matrix) are only set

identified. In contrast, frequentist methods would require imposing additional restrictions

in case of partial identification (cf. Maxand (2020), or Bertsche and Braun (2022)).

As an empirical illustration, we present an application to the world oil market. In par-

ticular, we consider the four-variable “workhorse” SVAR model proposed by Kilian and

Murphy (2014), also entertained by Baumeister and Hamilton (2019), Zhou (2020), Braun

and Brüggemann (2022), among others, and recently extended by Cross et al. (2022). We

assume that the structural shocks are skewed t-distributed and follow GARCH(1,1) pro-

cesses. Because of sufficient skewness and persistent conditional volatility, all shocks are
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deemed identified. Kilian’s (2008) measure of exogenous oil supply shocks helps in label-

ing one of the statistically identified shocks as the oil supply shock, but turns out to be a

weak instrument. In addition, the sign restrictions used in the previous literature and the

oil price uncertainty index of Cross et al. (2022) facilitate labeling the flow demand and

precautionary demand shocks, respectively.

The rest of the paper is organized as follows. Section 2 introduces the n-dimensional

SVAR model and our main assumption, under which full identification can be shown when at

least n−1 of the structural shocks either are skewed or follow persistent conditional volatility

processes. In Section 3, we show how the SVAR model is fully or partly identified using third

moments (Subsetion 3.1) or fourth moments (Subsection 3.2), and discuss strengthening

identification via external instruments (Subsection 3.3). Section 4 concentrates on Bayesian

inference in the non-Gaussian SVAR model. We explicitly discuss the implementation of the

model in the case of skewed t-distributed structural shocks following GARCH(1,1) processes

that is expected to be quite widely applicable. Moreover, in Subsection 4.3 we consider

checking for specification and identification using the Bayes factor. Section 5 contains the

empirical application. Finally, Section 6 concludes.

2 Model

We consider the following structural vector autoregressive (SVAR) model of order p:

yt = ν + A1yt−1 + · · ·+ Apyt−p +Bεt, (1)

where yt is the n-dimensional time series of interest, ν is an (n × 1) intercept term, and

A1, . . . , Ap are (n × n) parameter matrices. The (n × n) nonsingular matrix B defines the

(n × 1) vector of reduced-form errors ut as a linear combination of the (n × 1) vector of

structural errors εt, i.e., ut = Bεt. The covariance matrix of εt is E(εtε
′
t) ≡ Σ, and thus the

(unconditional) covariance matrix of the reduced-form errors is E(utu
′
t) = BΣB′ ≡ Ω. We

denote the (i, j) elements of Ω and Σ by ωij and σij, respectively.

Throughout, we assume that the components of εt are mutually uncorrelated but not

necessarily independent. The following is our main assumption, under which we derive
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results related to identification by skewness of the structural shocks. It will be slightly

modified later on to facilitate making use of excess kurtosis in identification.

Assumption 1

(i) The error process εt = (ε1t, ..., εnt)
′ is a sequence of stationary random vectors with

each component εit, i = 1, . . . , n, having zero mean, a finite positive variance σii, and

a finite third moment.

(ii) For all i = 1, . . . , n, the components εit are serially uncorrelated: Cov(εi,t, εi,t+k) = 0

for all k ̸= 0.

(iii) The component processes εit, i = 1, . . . , n, are orthogonal and have zero co-skewness.

(iv) At least one component of εt has nonzero skewness.

Parts (i) and (ii) of Assumption 1 are standard in the SVAR literature with the exception

that we assume each component of εt to have a finite third moment in addition to zero mean

and finite positive variance. As we will see in Section 3, this additional assumption is needed

to identify matrix B under Assumption 1(iii) that the structural shocks are only mutually

orthogonal instead of being independent, as typically assumed in the statistical identification

literature (see, e.g., Lanne et al. (2017)). Part (iii) also requires the components of εt to

have zero co-skewness, i.e., E(εitεjtεkt) = 0 for all i, j, k = 1, . . . , n, excluding i = j = k.

In contrast, nothing is assumed about the fourth co-moments, so the structural shocks can

follow (univariate) time-varying volatility processes that are mutually dependent. As will

be discussed in detail in Section 3, if there is sufficient heteroskedasticity in the structural

shocks, we can make use of Lewis’s (2021) result that matrix B is fully identified, provided

the fourth (co-)moments of the components of εt exist because Assumption 1(i)–(iii) covers

Lewis’s assumptions.

Even if the structural shocks are homoskedastic, B may be identified if they are suffi-

ciently skewed, and Assumption 1(iv) is related to this. It seems quite different from the

statistical identification literature, where typically at most one of the structural shocks is

allowed to be Gaussian to guarantee identification of B. Also in our setup, full identification

is achieved when at most one component of εt is symmetric, but as shown in Section 3, for

partial identification it suffices that only one component has nonzero skewness.
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3 Partial and full identification of structural errors

In this section, we provide full and partial identification results based on skewness and excess

kurtosis of the structural errors. Our main result is that all skewed structural errors (and

the corresponding columns of B) are globally point identified (up to ordering and signs)

even when they are not mutually independent but only orthogonal. The remaining shocks

are only set identified, but as pointed out by Anttonen et al. (2023), the bounds of the

identified set of B are relatively narrow. Moreover, if at most one of the shocks has zero

skewness, all structural errors are globally point identified. The latter is akin to the result

in Lewis (2022) that if all but one of the structural shocks exhibit time-varying volatility

with non-zero autocovariance, they are all identified. These results are useful because they

allow for dependent time-varying volatility processes. While it is not necessary to assume

any parametric model to capture conditional heteroskedasticity, if such a model is known, it

can be used to strengthen (achieve) identification. For instance, in the empirical application

in Section 5, we specify first-order GARCH processes for the volatilities of the structural

shocks.

Indeed, skewness and time-varying volatility are not mutually exclusive. As an example,

consider the case εt = Σ
1/2
t ϵt, where Σt = diag(exp(σ2

1t), . . . , exp(σ
2
nt)), σ

2
it = ϕiσ

2
i,t−1 + ξit,

ξt = (ξ1t, . . . , ξnt)
′ ∼ N(0,Σξ), and ϵt ∼ N(0, In). Then, if the innovations ϵit and ξit

are correlated, the marginal distribution of εit is skewed and leptokurtic (see, for example,

Yang (2008)). Such a situation arises, for instance, when the structural error at time t is

correlated with the volatility at time t+1, and is especially common in financial data, where

negative correlation between the return at time t and the realized volatility at time t + 1

is often observed (see, e.g., Yu (2005), Omori et al. (2007), and Chan and Grant (2017)).

However, if the structural shocks exhibit conditional heteroskedasticity, it should, in general,

be incorporated into the model to avoid misspecification and to sharpen identification even

if the model is identified by skewness.

We also consider the case where all structural shocks exhibiting excess kurtosis are either

leptokurtic or platykurtic. Then the leptokurtic (platykurtic) shocks are globally point

identified, and if at most one of them is mesokurtic (i.e., has no excess kurtosis) all shocks are

globally point identified. This result holds for both skewed and symmetric structural errors.
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However, identification by leptokurtic shocks is somewhat restrictive in that dependent time-

varying volatility processes are precluded, although the structural errors can otherwise be

dependent. While identification cannot be established by excess kurtosis, when the structural

shocks follow mutually dependent time-varying volatility processes, it is plausible that excess

kurtosis still strengthens identification.

Finally, in Subsection 3.3 we show how identification achieved based on our results can

be strengthened by external instruments, or proxies, each of which is correlated with only

one of the structural shocks. External instruments can also be useful in labeling the shocks,

as statistical properties of the data only facilitate identification up to their ordering and

signs. Following the seminal articles of Stock and Watson (2012) and Mertens and Ravn

(2012), the proxy-SVAR literature is burgeoning, but coming up with exogenous instruments

may not be straightforward, and even credibly exogenous proxies may be weak. Apart from

strengthening identification by combining the information in the proxies with the statistical

properties of the structural shocks, our results may help assess the validity of the external

instruments.

3.1 Identification using third moments

In this subsection we consider identification of the B matrix in SVAR model (1) under As-

sumption 1. Specifically, we show that all structural shocks, or equivalently, all columns

of matrix B, are identified, when at least n − 1 of the n structural shocks follow a skewed

distribution. Full identification when at most one of the structural shocks is Gaussian, have

been put forth previously (see, e.g., Lanne et al. (2017)), but they require mutual indepen-

dence of the shocks, while our assumptions allow the shocks to be dependent. Moreover, as

pointed out in Section 2, its parts (i)–(iii) cover Lewis’s (2021) assumptions (specifically,

his Assumption A), so his results guarantee full identification of B, provided the fourth co-

moments of εt exist. In particular, global identification is achieved if at least all but one of

the components of εt exhibit time-varying volatility with non-zero autocovariance.

Partial identification can be achieved if at least one of the n components of εt is skewed.

Specifically, under Assumption 1, the columns of B corresponding to the skewed shocks are

globally point identified, while the remaining columns are only set identified. Partial identifi-
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cation by non-Gaussianity and conditional heteroskedasticity has previously been considered

by Maxand (2020), Guay (2021), and Bertsche and Braun (2022). However, our approach is

more general than these in that it allows for dependent time-varying volatility processes of

the structural shocks, and Maxand (2020) also assumes the shocks to be independent.

Our first identification result is stated as Proposition 1, and its proof is found in Appendix

A. As always in the case of statistical identification of SVAR models, identification is achieved

only up to signs and permutation of the columns of B, which has to be taken into account

in conducting statistical inference.

Proposition 1 Suppose εt = B−1ut satisfies Assumption 1, and assume that r (0 < r ≤ n)

components of εt have nonzero skewness, and that the remaining n − r components of εt

have zero skewness. Assume further without loss of generality that these n − r symmetric

components are ordered last. Let B = [B1, B2] with B1 (n× r) and B2 (n× (n− r)).

(i) If r < n − 1, the (n × r) matrix B1, corresponding to the r skewed components of εt,

is globally point identified up to sign reversals and ordering of its columns, while the

(n× (n− r)) matrix B2 is set identified.

(ii) If at least n − 1 (r ∈ {n − 1, n}) components of εt have nonzero skewness, the full

matrix B is globally point identified up to sign reversals and ordering of its columns.

3.2 Identification using fourth moments

Leptokurtic shocks are likely to be common in economic applications (see, e.g., Lanne et al.

(2022) and the references therein). Lanne et al. (2022) showed how the SVAR model can

be identified by leptokurtic shocks in the GMM framwork, while here we consider full and

partial identification by the fourth moment structure of the structural errors. To that end,

we make the following Assumption 2, which is a slight modification of Assmption 1.

Assumption 2

(i) The error process εt = (ε1t, ..., εnt)
′ is a sequence of stationary random vectors with

each component εit, i = 1, . . . , n, having zero mean, a finite positive variance σii, and

finite third and fourth moments.
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(ii) For all i = 1, . . . , n, the components εit are serially uncorrelated: Cov(εi,t, εi,t+k) = 0

for all k ̸= 0.

(iii) The component processes εit, i = 1, . . . , n, are orthogonal and have no excess co-

kurtosis.

(iv) Of the components of εt s (0 < s ≤ n) are all either leptokurtic or platykurtic, and

each of the remaining n− s components has zero excess kurtosis.

Parts (i) and (ii) are almost identical to those in Assumption 1 (εit is assumed to have

a finite fourth moment in addition to having a finite third moment). While orthogonal,

as opposed to independent, shocks are still allowed for, Assumption 2(iii) differs from its

counterpart in Assumption 1 in that zero co-skewness is replaced by no excess co-kurtosis.

Specifically, this means that, normalizing the unconditional variances σii (i = 1, . . . , n) to

unity, E(εitεjtεktεlt) = 1 when i = k, j = l ̸= k or i = l, j = k ̸= l or i = j ̸= k = l

(i, j, k, l = 1, . . . , n), and zero otherwise (except for i = j = k = l). While the shocks

need not be independent, dependent time-varying volatility processes are precluded, which

makes this assumption somewhat more restrictive than Assumption 1(iii). Finally, part

(iv), adapted from Lanne et al. (2022), states that there is at least one non-Gaussian shock

and if there are multiple non-Gaussian shocks, the excess kurtosis of each of them must

have the same sign. As discussed in Lanne et al. (2022), this assumption is not restrictive

because platykurtic shocks are highly unlikely in economic applications, while leptokurtic

shocks abound.

According to part (i) of Proposition 2 below, global point identification of the s leptokur-

tic components of εt (or equivalently, of the corresponding columns of B) is achieved (up

to their sign reversals and ordering) under Assumption 2. The proof is found in Appendix

B). In addition, part (ii) states that the full matrix B is globally point identified up to sign

reversals and ordering of its columns if at least n − 1 elements of εt are all leptokurtic (or

platykurtic). This result follows from Proposition 2 in Lanne et al. (2022). Notice also that

because Assumption 2 does not impose any restrictions on the third (co-)moments of εt, also

all skewed components of εt are globally point identified even if they are mesokurtic (i.e.,

have zero excess kurtosis) according to Proposition 1 (provided Assumption 1 is satisfied).
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Proposition 2 Suppose εt = B−1ut satisfies Assumption 2, and assume that s (0 < s ≤ n)

components of εt are leptokurtic (platykurtic), and that the remaining n − s components

of εt have zero excess kurtosis. Assume further, without loss of generality, that the n − s

mesokurtic components are ordered last.

(i) Suppose s < n − 1, and let B = [B1, B2] with B1 (n × s) and B2 (n × (n − s)), with

B1 and B2 corresponding to the s leptokurtic (or platykurtic) and n − s mesokurtic

components of εt, respectively. Then B1 is globally point identified up to sign reversals

and ordering of its columns, while B2 is set identified.

(ii) If at least n − 1 (s ∈ {n − 1, n}) components of εt are all leptokurtic (platykurtic),

the full matrix B is globally point identified up to sign reversals and ordering of its

columns.

3.3 Strengthening Identification via External Instruments

Identification can be strengthened by external instruments, or proxies, each of which is

correlated with one of the shocks and uncorrelated with the rest of them. Braun and

Brüggemann (2022) combine sign restrictions and external instruments in identification,

and following their lead, we consider such instruments to strengthen identification achieved

by non-Gaussianity (or conditional heteroskedasticity).

Let us denote by mt = (m1t, . . . ,mkt)
′ the k×1 vector of external variables that identify k

of the n structural shocks and augment the SVAR model in (1) by equations for the elements

of mt to obtain

ỹt = ν̃ + Ã1ỹt−1 + · · ·+ Ãpỹt−p + B̃ε̃t, (2)

where ỹt = (y′t,m
′
t)

′, ν̃ = (ν ′, ν ′
m)

′, ε̃t = (ε′t, η
′
t),

Ãi =

Ai 0n,k

Γ1i Γ2i

 and B̃ =

B 0n,k

Φ Σ
1/2
η

 . (3)

Here B̃ is assumed invertible, Γ1i and Φ are (k × n) coefficient matrices, Γ2i is a (k × k)
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coefficient matrix, Ση is a (k × k) parameter matrix, and ηt is a (k × 1) vector of zero mean

measurement errors, which are assumed to be orthogonal to the structural errors εt.

The n × k blocks of zeros in the upper right corners of Ãi (i = 1, . . . , p) and B̃ reflect

the fact that the instruments are external to the SVAR model in (1). Without further

restrictions, the elements of ε̃t are only set identified, and the identification of εt and ηt

only depends on their separate processes. To see this, consider a SVAR process defined by

B̃∗ = B̃Q̃, where B̃∗ has the same structure as B̃ (that is, B̃∗ is a lower triangular matrix),

and ε̃∗t = Q̃−1ε̃t. If Q̃ is an ((n + k) × (n + k)) orthogonal matrix, this SVAR process is

observationally equivalent to (2). As shown in Appendix C, then Q̃ = diag(Q̃1, Q̃4), where

Q̃1 and Q̃4 are (n× n) and (k × k) orthogonal matrices, respectively.

The result that Q̃ = diag(Q̃1, Q̃4) implies that ε̃∗t = Q̃−1ε̃t can be written as εt = Q̃1ε
∗
t and

ηt = Q̃4η
∗
t . Thus, if all the elements of εt (ηt) are Gaussian, Q̃1 (Q̃4) remains an orthogonal

matrix, and hence the elements of εt (ηt) are indeed only set identified, as stated in Braun and

Brüggemann (2023) and Arias et al. (2021). However, if εt and/or ηt satisfy Assumption 1,

all their skewed components are point identified and the remaining shocks are set identified,

as Proposition 1 can be directly applied to εt = Q̃1ε
∗
t and ηt = Q̃4η

∗
t separately.1 Obviously,

if at most one of the components of εt (ηt) has zero skewness, all the components of εt (ηt)

are point identified (i.e., Q̃1 (Q̃4) is a signed permutation matrix). In the same vein, if εt

and/or ηt satisfy Assumption 2, all their leptokurtic components are point identified, and

their remaining components are set identified. Also, if at least n− 1 (k − 1) components of

εt (ηt) are all leptokurtic, all the components of εt (ηt) are point identified.

In much of the proxy SVAR literature, external instruments are assumed to be unpre-

dictable by lagged values of ỹt, which means that Γ1i = Γ2i = 0 for i = 1, . . . , p in (2). With

this restriction, the last k equations of (2) can be expressed as

mt = νm + Φεt + Σ1/2
η ηt. (4)

This suggests that identifying information from external instruments can be incorporated

1In this case, Q̃1 (Q̃4) is of the form diag(P,D), where P is a signed permutation matrix and D is
an orthogonal matrix, with the dimensions depending on the length of εt (ηt) and the number of skewed
components (see (A.14) in Appendix A.
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into (2) by imposing zero restrictions on the elements of Φ. In particular, without loss of

generality, let us collect the k shocks of interest into the vector ε1t and the remaining shocks

into the vector ε2t, so εt = (ε′1t, ε
′
2t)

′ and partition Φ accordingly as Φ = [Φ1,Φ2] with Φ1

and Φ2 (k × k) and (k × (n− k)) matrices, respectively. Then, if the instruments in (4) are

valid for ε1t, the following two conditions hold:

Φ2 = 0k,n−k, (5)

and

Φ1 ̸= 0, rank(Φ1) = k, (6)

where (5) and (6) are the exogeneity and the relevance conditions, respectively. Provided Φ

is point identified, these conditions can be assessed by Bayes factors as discussed in Section

4.

Whether Φ is identified, in turn, depends on the properties of the structural errors εt:

if at most one of the components of εt is symmetric and/or at least n − 1 components of

εt are all leptokurtic (or exhibit persistent conditional heteroskedasticity), all columns of Φ

are point identified. This can be seen by comparing the observationally equivalent SVAR

models characterized by B̃ and B̃∗ = B̃Q̃:

B̃∗ =

B∗ 0n,k

Φ∗ Σ
∗1/2
η

 =

B 0n,k

Φ Σ
1/2
η

 Q̃1 0n,k

0k,n Q̃4

 =

BQ̃1 0n,k

ΦQ̃1 Σ
1/2
η Q̃4

 . (7)

As shown above, Q̃1 is a signed permutation matrix when εt is point identified, and, hence,

Φ is point identified because Φ∗ = ΦQ̃1.

4 Bayesian Inference

We estimate the parameters of the SVAR model in (1) by Bayesian methods. As Anttonen et

al. (2023) point out, Bayesian analysis of the model is possible even if the parameters are only

set identified because it only requires a proper posterior, which can be established by using

proper priors. This facilitates valid Bayesian inference without additional restrictions also
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when point identification of some (or all) shocks due to Gaussianity and homoskedasticity

fails. Furthermore, the identified set of B is not unconstrained, but its bounds are actually

relatively narrow: the absolute value of the (i, j)-element of B cannot exceed ω
1/2
ii (see, e.g.,

Anttonen et al. (2023) and the references therein).

Because of set identification, the posterior distribution of the parameters can be obtained

by simulation also when point identification fails. This only requires an estimation algorithm

that is efficient enough to facilitate estimation of a large number of parameters under the

complex topology of the identified set. To this end, we employ the very efficient Hamiltonian

Monte Carlo (HMC) algorithm of Anttonen et al. (2023), based on the No-U-Turn Sampler

(NUTS) of Gelman and Hoffman (2014), which is able to provide accurate estimates of

the posterior distribution of the parameters even when all structural shocks are not point

identified.

It is important to realize that the existence of third and/or fourth moments of the ele-

ments of the error vector is required only for establishing identification, but estimation based

on a non-Gaussian parametric distribution (such as the skewed t-distribution used in this

paper) need not depend in any way on the higher moments per se. In particular, no empirical

estimation of higher moments is required in this case. This should alleviate the concerns

of some authors (e.g., Montiel Olea et al. (2021)), who have been worried about potential

weak identification of non-Gaussian SVAR models because accurate empirical estimation of

the third and higher moments may require more data than is often available.

4.1 Likelihood function

For Bayesian inference, we need the likelihood function and the prior distribution of its

parameters. Here we only derive the likelihood function of the SVAR model in (1), but the

derivations generalize in a straightforward manner to the augmented SVAR model in (2) by

replacing εt by ε̃t = (ε′t, η
′
t)

′. Let us start out by specifying the distribution of the structural

errors, which should be sufficiently flexible to fully exploit various types of deviations from

Gaussianity, as well as potential heteroskedasticity. Moreover, to avoid misspecification, it is

important to approximate the true error distribution as accurately as possible. To this end,

following Anttonen et al. (2023), we reparametrize εt as Σ
1/2
t ϵt, where ϵt = (ϵ1t, . . . , ϵnt)

′,
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and assume that each individual structural error ϵit (i = 1, . . . , n) has zero mean and unit

variance and follows a skewed t-distribution. Hence, Σt is the conditional covariance matrix

of εt, V ar[εt|σt,𭟋t−1], where σt = (σ1t, . . . , σnt)
′ and 𭟋t−1 = {ε1, . . . , εt−1, σ1, . . . , σt−1}.

Furthermore, Σt = diag(σ2
t ) with σ2

t = σt ⊙ σt, where ⊙ denotes the Hadamard product.

While the conditional variances σ2
it of the components of εt may be mutually dependent,

the elements of ϵt are assumed mutually and temporally independent, and also σt and ϵt are

assumed independent of each other. The skewed t-distribution depends on two parameters,

λi and qi that control the skewness and excess kurtosis of ϵit (and, hence, of εit), respectively,

and it nests the Gaussian distribution as a limiting case.

While these assumptions cover a wide variety of volatility processes, including stochastic

volatility (SV) and autoregressive conditional heteroskedasticity (ARCH) type processes, we

provide the likelihood function in the special case of a generalized ARCH (GARCH) law

of motion for σt. Assuming, say, a stochastic volatility process would lead to only minor

changes in the likelihood function, but computational complexity would increase because in

that case integration over a high-dimensional σt is required. Specifically, we parametrize σit

as

σ2
it = ci + αiσ

2
i,t−1 + βiε

2
i,t−1, i = 1, . . . , n, (8)

where both αi and βi are restricted positive. In addition, in order to normalize the un-

conditional shock variance to unity and to keep the volatility processes stationary, we set

ci = 1− αi − βi, where νi > 0.

Let us next collect the parameters controlling the law of motion of σt and the shape of

ϵit (i = 1, . . . , n) into the vectors δ = (α1, β1, . . . , αn, βn)
′ and γi = (λi, qi)

′ (i = 1, . . . , n),

respectively. Then, substituting εt for Σ
1/2
t ϵt in (1) and recalling the mutual (and temporal)

independence of the elements of ϵt, we can write the density function of the distribution of

the data y as

p(y|θ) = | det (B)|−T

n∏
i=1

T∏
t=1

σ−1
it fi(σ

−1
it ι′iBut(π); γi), (9)

where θ = (π′, vec(B)′, δ′, γ′)′, π = vec(ν,A1, . . . , Ap)
′, γ = (γ′

1, . . . , γ
′
n)

′, ιi is the ith unit

vector, ut(π) = yt − ν − A1yt−1, · · · , Apyt−p, and fi(·) (i = 1, . . . , n) is the density function

of ϵit. To retain the elements of B unconstrained, the unconditional variances of εit are
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normalized to unity: E(ε2it) = E(σ2
it) = σii = 1 (i = 1, . . . , n). Alternatively, the diagonal

elements of B can be normalized to unity, in which case we assume that σii > 0 (i = 1, . . . , n).

4.2 Prior Distribution

In this subsection, we briefly describe the priors used in our empirical applications in Section

5 that are likely to be even more widely applicable in economic applications. They closely

resemble those in Anttonen et al. (2023), and we refer to their paper for a more detailed

discussion.

As mentioned in Subsection 4.1, two parameters, λi and qi, control the shape ϵit (i =

1, . . . , n) that follows a skewed t-distribution. Skewness is controlled by λi ∈ (−1, 1), with

negative (positive) values indicating negative (positive) skewness, and λi = 0 for a symmetric

random variable. We assume a symmetric Beta prior with equal shape parameters on 2λi−1.

A uniform prior would be obtained by setting the value of the shape parameters of the Beta

distribution at unity, but we set them at four, which gives a slightly higher prior probability

to symmetric than extremely skewed distributions.

The parameter qi controls the excess kurtosis of ϵit in the same manner as the degree-

of-freedom parameter of a Student’s t-distribution (the degree-of-freedom parameter of a

skewed t distributed random variable is 2qi). It takes only positive values, and, according

to our experience, its distribution is skewed and has a long tail. Therefore, we sample

from it in terms of log(qi). In particular, we assume a normal prior (with mean unity and

standard deviation equal to 2) on log(qi − 1), resulting in a shifted log-normal prior on the

degree-of-freedom parameter that guarantees a well defined variance (2qi > 2). As discussed

in Anttonen et al. (2023), this prior on qi results in efficient posterior geometry, gives

significant prior probability to an approximately Gaussian shock distribution and reflects

our prior notion of reasonable values of the degree-of-freedom parameter.

As for the parameters αi and βi controlling the volatility processes, we assume priors

that favor persistent volatility. In particular, the restriction ci + αi + βi = 1 (where ci > 0

captures the constant part of the volatility process) suggests a Dirichlet prior on αi and

βi. Based on the properties of a Dirichlet distribution, this, in turn, implies marginal beta

priors on these parameters, and we tailor the parameters of the prior distribution to favor
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values of αi close to unity (giving a higher prior probability to persistent volatility processes).

Following Anttonen et al. (2023), we set the prior such that the marginal priors on αi and

βi coincide with beta distributions with the shape parameters equal to 10 and 2, and 1 and

11, respectively.

We assume the Gaussian independent Minnesota prior for the elements of π characterized

by the following equations (see Litterman (1986) and Doan, Litterman, and Sims (1984)):

E[A1] = In (10)

E[Ah] = 0n×n, for h ≥ 2 (11)

Var[Ah,i,j] =


(

κ1

hκ2

)2
if i = j(

κ1κ3

hκ2

)2 ωii

ωjj
if i ̸= j,

(12)

where κ1 ≥ 0 controls the overall tightness of the prior, κ2 ≥ 0 controls for the tightness

of the higher lags (greater values imply a faster decay of the coefficients towards zero) and

κ3 ∈ [0, 1] controls the additional cross-equation shrinkage.

The fraction ωii

ωjj
accounts for the different scales of the variables of the SVAR model,

and, in the literature, this term is usually approximated a priori by the estimated variances

of the univariate autoregressive processes. However, as discussed in Anttonen et al. (2023),

the efficient implementation of the NUTS algorithm requires scaling the elements in B such

that they have a roughly similar scale. This can be accomplished, for instance, by first

demeaning the time series and then multiplying each of the resulting series by a factor that

results in residual series with a unit variance. As a result, ωii ≈ ωjj, for all i, j = 1, ..., n

and consequently ωii

ωjj
≈ 1. This data transformation also makes it much easier to scale the

prior distribution of the parameter matrix B. In particular, it results in B whose diagonal

elements are approximately one, giving us a natural candidate (i.e., an identity matrix) for

the prior mean.

To avoid the arbitrary element in setting the prior variance, we treat κ1 as a hyperpa-

rameter and estimate it from the data as explained in Anttonen et al. (2023). We employ a

log-normal prior for κ1 with log-mean of 0.65 and log-variance of 1.52, the hyperprior mode

thus being around the common rule-of-thumb value 0.2. For simplicity and convenience, we

16



fix κ2 = 1 and κ3 = 0.5.

We restrict the signs of the diagonal elements of B positive. Although this technically

restricts the parameter space to some extent, in our experience, it rarely has any effect on

the posterior distribution. However, it greatly alleviates the practical difficulties related

to occasional switching of the shocks due to the fact that εt is only identified up to sign

reversals and ordering of its elements (see Brunnermeier et al. (2021) and Anttonen et al.

(2022, 2023) for further discussion). After restricting the diagonal elements positive, we set

a log-normal prior with a sufficiently large log-variance (4.0) to avoid excessively restricting

the scale of the diagonal elements.

As for the off-diagonal elements of B, the amount of shrinkage applied is much more

important than in the case of the diagonal elements, and it may enhance the identification

of shocks to a large extent, if properly chosen. However, as the appropriate amount of

shrinkage is not only a function of the model (including the prior), but also of the data, it is

also here ideal to estimate the hyperparameters controlling the shrinkage. To this end, we set

a standard log-normal hyperprior on the standard deviation of the prior of the off-diagonal

elements of B. Such a hyperprior with mode equal to e−1 ≈ 0.37 gives a significant prior

probability to values of standard deviation close to, but above, zero. This seems sensible

given that the prior on the diagonal elements of B gives the most probability mass to the

diagonal elements around unity. Importantly, imposing this hyperprior does not fix the prior

of the elements of B, but it can be interpreted as some kind of a suggestion for a reasonable

prior that is updated if it contradicts the data to a sufficiently large extent.

4.3 Checking for Specification and Identification

According to Propositions 1 and 2, the skewed and leptokurtic shocks are point identified.

The strength of identification based on skewness and excess kurtosis of the shocks can be

assessed in a straightforward manner by inspecting the posterior densities of the respective

parameters of the skewed t-distributions specified for the structural errors. Moreover, as dis-

cussed in Subsection 3.1, if at least n− 1 shocks exhibit persistent conditional heteroskedas-

ticity, all shocks are point identified. The Bayes factor of a SVAR specification with the

errors following conditional volatility processes against a homoskedastic SVAR model may
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yield evidence in favor of sufficient conditional heteroskedasticity. Even if identification is

achieved by higher moments, checking for the presence of conditional heteroskedasticity by

the Bayes factor is, in general, advisable to avoid misspecification.

The Bayes factor is obtained as the ratio of the marginal likelihoods of two competing

models. Specifically, the Bayes factor of Model 1 (M1) against Model 2 (M2) equals

BF12 =

∫
p(θ1 | M1)p(Y | θ1,M1)dθ1∫
p(θ2 | M2)p(Y | θ2,M2)dθ2

, (13)

where p(θi | Mi) is the prior density of the parameters θi of the model Mi, i = 1, 2. The

quantities p(Y | θ1,M1) and p(Y | θ2,M2) are the corresponding likelihood functions, and

Y = (y′1, . . . , y
′
T )

′ is the vector of data. To interpret the values of the Bayes factor, we use the

widely acknowledged reference categories of Kass and Raftery (1995), with values from 1 to

3.2, from 3.2 to 10, from 10 to 100 and greater than 100 indicating virtually zero, substantial,

strong and decisive evidence in favor of M1 against M2, respectively. Typically, M1 is more

general than M2 and BF12 is greater than unity. It is, however, possible that the evidence

still supports M2 more than M1, in which case the Bayes factor is less than unity, and the

reference categories of Kass and Raftery (1995) should be applied to BF21, the inverse of

BF12 instead.

In addition to assessing whether there is sufficient heteroskedasticity for identification,

the Bayes factor can be used to check for the validity of identifying external instruments.

Recall from Subsection 3.3 that, with k instruments, the (k× (n−k)) matrix Φ2 in (2) must

equal zero for the instruments to be exogenous, and the (k × k) matrix Φ1 must deviate

from zero for the instruments to be relevant. Hence, exogeneity can be assessed by imposing

Φ2 = 0 in (2) and using (13) to compare the resulting model M1 against the model M2, where

no restrictions are imposed on Φ2. In the same vein, instrument relevance can be assessed

by comparing the unrestricted model M1 against M2, where Φ1 = 0. Values of the Bayes

factor greater than 3.2 (10), indicate substantial (strong) evidence in favor of exogoneity

or relevance of the instruments. If evidence in favor of exogeneity is found, it may be a

good idea to restrict Φ2 equal to zero in M1 when checking for instrument relevance, as this

increases the probability of the Bayes factor being informative.

Above as well as in Subsection 3.3, we assumed that the k instruments are correlated
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with the first k elements of εt (if any). This poses no problem when sign restrictions are used

to provide the shocks with economic labels, as in Braun and Brüggeman (2022), whereas the

shocks are identified only up to ordering (and signs) by statistical properties of the data and

have no economic interpretation a priori. Therefore, it is not known which of the statistically

identified shocks are the likeliest to be correlated with each of the instruments. However,

following the previous statistical identification literature, inspection of the impulse responses

and forecast error variance decompositions can be used for labeling, and subsequently the

shocks of interest can be ordered first before introducing the instruments. In addition,

Bayes factors can be used to match the shocks with instruments such that the exogeneity

and relevance conditions are likely to be satisfied. For instance, in the case of one instrument,

the exogeneity and relevance of the instrument for each statistically identified shock can be

assessed in turn, and the shock with the strongest evidence in favor of validity is deemed

the shock of interest. Alternatively, the posterior distributions of the elements of Φ can be

inspected, which is our approach in Section 5.

5 Empirical Application

We illustrate the methods by means of an empirical application related to the crude oil

market. In the previous literature, different strategies have been used to identify the struc-

tural shocks in SVAR models of the oil market. However, typically the shocks have been

assumed Gaussian, so without additional restrictions, they are only set identified, and to

achieve point identification, additional information must be incorporated into the model.

For instance, Kilian and Murhpy (2014) use sign restrictions on impulse responses, while

Baumeister and Hamilton (2019) impose short-run restrictions on the impact matrix (or

its inverse) by means of the prior distribution. Montiel Olea et al. (2021) use an external

instrument as a proxy for the oil supply shock, and Braun and Brüggemann (2022) combine

sign restrictions with a proxy variable in identification.

Instead of assuming the structural errors to be Gaussian, our approach is to use a highly

flexible error distribution to capture most deviations from normality. This way, as shown by

the identification results in Section 3, we can efficiently learn about the structural shocks of
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interest from data when these shocks exhibit non-Gaussianity. Specifically, we assume that

each of the errors follows a skewed t distribution. Because it nests the Gaussian distribution

(as a limiting case), checking for identification is straightforward, as discussed in Subsection

4.3. To avoid misspecification due to unmodeled heteroskedasticity, we assume that the

conditional variance of each error term follows the GARCH(1,1) process in (8).

In addition to relying on non-Gaussianity for identification, we consider two ways of

strengthening it. First, following Braun and Brüggemann (2022), we use Kilian’s (2008)

measure of exogenous oil supply shocks as an instrument for the oil supply shock. This

proxy variable also helps in labelling the one of the statistically identified shocks as the supply

shock. Second, following Baumeister and Hamilton (2019) and Braun and Brüggeman (2022),

we consider imposing strongly informative priors on the oil supply elasticities. However, in

terms of impulse responses, the impact of the proxy variable and tight priors turns out to

be negligible.

Our SVAR(13) model comprises the same four variables as Kilian and Murphy’s (2014)

model: global oil production (prodt), global real activity (ipt), the real price of oil (rpot), and

the seasonally adjusted OECD crude oil inventories (invt), i.e., yt = (prodt, ipt, rpot, invt)
′.

We use the global industrial production index of Baumeister and Hamilton (2019) as a

measure of ipt. All these variables are expressed in logs, and the monthly series run from

October 1978 to November 2018. Kilian’s (2008) oil supply shock series covers the period

from January 1973 to September 2004 only, and we use its extended version that spans from

January 1973 to November 2018 in our analysis (see Braun and Brüggeman (2022)).2

5.1 Strength of Identification

Using Bayesian methods described in Section 4, we estimate the SVAR(13) model (1) aug-

mented by univariate GARCH(1,1) processes (8) for the structural errors. Thirty chains,

each consisting of four thousand draws, are generated using the NUTS algorithm. The first

thousand draws are used for automatic tuning of the algorithm, so the posterior sample

2The same data were used by Braun and Brüggeman (2022), and we downloaded them from
https://www.tandfonline.com/doi/suppl/10.1080/07350015.2022.2104857. For a detailed discussion
on the variables, see Kilian (2008, 2009), Baumeister and Hamilton (2019), and Braun and Brüggeman
(2022).
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consists of ninety thousand draws that are only slightly autocorrelated. The convergence

of these chains is assessed using the potential scale reduction factor (PSRF) introduced by

Gelman et al. (2013). For each parameter of the model, the value of PSFR is below the

threshold of 1.01 specified by Vehtari et al. (2021), indicating satisfactory convergence.

In view of Propositions 1 and 2, identification depends on the statistical properties of the

structural errors, and its strength can be assessed by checking to what extent the assumptions

underlying these results are satisfied. To that end, we depict in Figure 1 the 68% and 90%

prior and posterior intervals of λi and 2qi (i = 1, . . . , 4), the parameters controlling the

skewness and kurtosis of the shocks, respectively. The posterior intervals of λi suggest that

Shocks 1, 2 and 3 exhibit relatively strong negative skewness, even after accounting for

conditional heteroskedasticity. As only one of the shocks seems symmetric, Proposition 1(ii)

suggest that the full matrix B is point identified. In contrast, the posterior intervals of the

degree-of-freedom parameter indicate only mild excess kurtosis, with very large values being

highly likely especially for Shocks 2 and 4. Thus, Proposition 2 is not useful in establishing

identification in this application.
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Figure 1: 68% and 90% prior and posterior intervals for the parameters λi and 2qi (i = 1, . . . , 4)
controlling for the skewness (left pane) and excess kurtosis (right pane; Degree-of-freedom param-
eter) of the skewed t-distributed structural shocks, respectively.

While all structural shocks turn out to be strongly identified via skewness, it is still in-
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teresting to check whether identification could also be achieved by conditional heteroskedas-

ticity. As discussed in Section 3, if at least three of the four shocks follow autocorrelated

volatility processes, the impact matrix B is point identified. Figure 2 depicts the posterior

distribution of the conditional volatility of each shock implied by the respective GARCH(1,1)

process over time. All four shocks seem to follow a highly persistent conditional volatility

process. Hence, the impact matrix B seems globally identified via not only skewness but

also conditional heteroskedasticity of the structural shocks.
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Figure 2: 68% and 90% point-wise credible sets and posterior medians (dashed lines) of the condi-
tional shock volatilities starting from December 1979.

Apart from facilitating identification, capturing conditional heteroskedasticity in the

structural errors is important from the viewpoint of avoiding misspecification. To exam-

ine conditional heteroskedasticity more closely, we compute the Bayes factor (BF) of the

esimated model against its homoskedastic counterpart. The computed Bayes factor equals

e123.4, lending decisive support to the model with time-varying shock volatilities. Thus, it

seems that the Gaussian and homoskedastic SVAR model in, Kilian and Murphy (2014),

Baumeister and Hamilton (2019) and Braun and Brüggeman (2022), among others, may be
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seriously misspecified in addition to unnecessarily overlooking useful identifying information.

As already mentioned, identification of the oil supply shock can be strengthened using

Kilian’s (2008) measure of exogenous oil supply shocks as an external instrument. Because

point identification is achieved by statistical properties of the data, instrument validity con-

ditions in (5) and (6) can be assessed by the Bayes factor. Furthermore, because the shocks

are identified only up to their ordering (and signs), but lack an economic interpretation,

the instrument can be helpful in labeling the supply shock. Hence, using the same data as

above, we estimate the augmented SVAR(13) model (2) with the exogenous oil supply shock

as an external instrument. We reparametrize the error vector ε̃t = (ε′t, η
′
t) as Σ

1/2
t ϵ̃t and

let its each component ϵ̃it (i = 1, . . . , n) follow a skewed t-distribution with mean zero and

variance unity. In accordance with the model excluding the instrument, we assume that the

diagonal elements of Σt follow univariate GARCH(1,1)-processes (8).

The marginal posterior distributions of the parameters λn+1 and 2qn+1 controlling the

skewness and excess kurtosis of the error term of the equation for the instrument, ηt, exhibit

negative skewness and long tails, respectively.3 In addition, strong persistent time-varying

heteroskedasticity seems to be present. As expected, the marginal posteriors of λi and qi for

i = 1, . . . , n are very close to those reported in Figure 1, and thus we can conculude that all

the parameters of (2) are point identified. Since also Φ, the vector containing the coefficients

of the variables in the equation for the instrument (see (3)), is point identified, the validity

of the instrument can be assessed. However, because the shocks have no labels, we first have

to figure out for which shock the instrument is the likeliest proxy, i.e., which shock is the

likeliest to be the oil supply shock. To that end, we report the posterior medians as well as

the 16% and 84% quantiles of the elements of Φ = (ϕ1, . . . , ϕ4) in Table 1. Among them,

only the 68% posterior credible set of ϕ1 does not contain zero, which suggests that the first

shock is the oil supply shock.

In view of the finding that the instrument is likeliest to be a proxy for the first shock,

its exogeneity can be assessed by imposing Φ2 = (ϕ2, ϕ3, ϕ4) = 0 in (2) and comparing the

resulting model M1 against the model M2, where no restrictions are imposed on Φ2. The

value of the Bayes factor comparing these two models is 42.6, lending very strong support in

3The 10% (16%) and 90% (84%) quantiles of λn+1 are –0.259 (–0.237) and 0.013 (–0.103), respectively,
whereas those of qn+1 are 1.391 (1.422) and 1.755 (1.613), respectively.
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Table 1: Posterior medians and 68% posterior credible sets of the elements of Φ = (ϕ1, . . . , ϕ4).

Parameter 16% 50% 84%
ϕ1 0.005 0.026 0.048
ϕ2 –0.024 –0.010 0.005
ϕ3 –0.005 0.007 0.019
ϕ4 –0.038 –0.016 0.005

favor of instrument exogeneity. In the same vein, to assess instrument relevance, we compute

the Bayes factor of the less constrained model M1, where no restrictions are imposed on

Φ1 = ϕ1, against the model M2, where Φ1 = 0. We set Φ2 = 0 in both models to make

the Bayes factor more informative. The reciprocal of the Bayes factor comparing the former

to the latter model is 1.5699, which lends no support to instrument relevance. However,

the results in Table 1 suggest that Kilian’s (2008) measure of exogenous oil supply shocks

may not be irrelevant but a relatively weak instrument. Also the fact that the posterior

probability P (Φ1 > 0 | y) is only 0.896 backs up this conclusion. Finally, as discussed in the

following subsection, the impulse responses to the shocks remain virtually intact whether

the instrument is used or not, which attests to this insight. Nevertheless, the instrument is

useful in labeling the first shock as the oil supply shock.

5.2 Impulse Responses Analysis

The posterior medians and 68% and 90% credible sets of the impulse responses to the struc-

tural shocks up to 40 months are depicted in Figure 3. The shocks are scaled such that

the ith shock causes a 1% change in the ith variable on impact. They are based on the

model excluding Kilian’s (2008) measure of exogenous oil supply shock; the results based on

the augmented model are virtually identical. Compared to corresponding impulse responses

in the previous literature, they have the advantage that due to versatile error distributions

and explicit modeling of conditional heteroskedasticity, severe misspecification is probably

avoided and identifying information in the data is efficiently utilized. However, additional

information is needed to label the shocks and, hence, to facilitate the interpretation of the

impulse responses. Kilian and Murhpy (2014) and Braun and Brüggeman (2022) consid-

ered three shocks, namely the flow supply shock, the flow demand shock, and the inventory
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(speculative) demand shock, and used the sign restrictions summarized in Table 2 for iden-

tification.

Table 2: The signs of the impact effects of oil supply, flow demand and inventory demand shocks
on prodt,ipt, rpot and invt. A positive (negative) effect is denoted by + (−), while ∗ denotes an
unrestricted effect.

Variable
prodt ipt rpot invt

Flow supply shock − − + ∗
Flow demand shock + + + ∗
Inventory demand shock + − + +

According to the results in the previous subsection, the additional instrument is only a

weak proxy for the oil supply shock, but it still facilitates labeling the first shock as the

flow supply shock. The impulse responses of this shock come close to satisfying the sign

restrictions of the supply shock, and they also resemble those in Kilian and Murphy (2014)

and are in line with standard economic intuition, so we label it the flow supply shock. The

shock is associated with a sharp and persistent decrease in oil production, but it has no effect

on the real activity. In addition, after the initial zero impact, a negative oil supply shock has

a positive effect on the real price of oil and a negative effect on crude oil inventories. Both

of these effects are highly persistent.

The impulse responses of Shock 2 come closest to satisfying the sign restrictions of the

demand shock, and they also resemble the corresponding impulse responses in Kilian and

Murphy (2014). Hence, we label Shock 2 the flow demand shock. It has a positive impact

on the real activity and the real price of oil (after the initial effect indiscernible from zero).

The former jumps to a higher level on impact, and the decay towards zero is very slow, while

the real price of oil increases relatively quickly, reaching its new permanent level within ten

months. Kilian (2009), Kilian and Murphy (2014), and Inoue and Kilian (2013) also report

positive oil price and real activity responses to a flow demand shock. In contrast, Kilian and

Murphy (2014) find almost no impact of the aggregate demand shock on inventories, while

according to Figure 3 there is a relatively small negative effect.

As for the remaining two shocks (Shocks 3 and 4) in Figure 3, neither of them can be

labeled as the inventory demand shock using the sign restrictions. Specifically, the poste-

rior probability of each of these two shocks satisfying the sign restrictions is zero, as all
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Figure 3: Impulse responses to the statistically identified shocks. The solid lines are the posterior
medians, and the shaded red areas are the 68% and 90% point-wise posterior intervals. The effect
of the ith shock is normalized such that it causes a 1% increase (or decrease) in the ith variable on
impact.

the probability mass of the impact responses of real activity lies above zero in both cases.

Recently, Cross et al. (2022) argued that instead of a composite inventory demand shock,

precautionary demand and speculative demand shocks should be considered separately. They

constructed an oil price uncertainty (OPU) index as a measure of uncertainty driving the

former shock (see their Figure 1), and it very closely resembles the conditional volatility of

Shock 3 implied by our model in Figure 2. Especially the peaks related to the Persian Gulf

war (1990–1991), the Great Recession (2007–2008) and the oil price collapse in 2014 are

clearly distinguishable in both series. Hence, assuming that conditional volatilities reflect

uncertainty related to the shocks, we can label Shock 3 the precautionary demand shock.

Finally, we additionally consider the bounds on the price elasticities of oil supply used by

Kilian and Murphy (2014) for identification. To that end, we impose very informative priors

26



on the supply elasticities. In particular, as explained in Braun and Brüggemann (2022),

η13k = B1k/B3k can be thought as an oil supply elasticity, measuring the percentage increase

of oil production (variable 1) in response to a one percentage increase in the real price of oil

(variable 3) caused by a positive demand shock. Following their lead, we assume the Student

t prior of Baumeister and Hamilton (2019) with mode 0.1, scale parameter 0.2, and 3 degrees

of freedom (and truncated to be positive) for both η132 and η134 (a detailed description of the

implementation of these priors is provided in Appendix D). These priors result in negative

impulse responses (with narrower bands than those depicted in Figure 3) of real activity to

the supply shock, but otherwise their effects on the impulse responses are minor.4

6 Conclusion

In this paper, we consider identification in SVAR models using non-Gaussian features of the

structural shocks, including skewness and excess kurtosis. In contrast to most of the previous

related literature, we relax the assumption in independent shocks and only require them to

be mutually orthogonal. The latter assumption is common in the SVAR literature, and the

independence assumption has been criticized on the grounds that independent structural

shocks may not always be obtained as linear transformation of the reduced-form residuals.

Moreover, the structural shocks are often likely to share a common source of volatility, which

is precluded when the shocks are independent.

We show full identification (up to ordering and signs of the structural shocks) when

at most one of the shocks is symmetric or at least n − 1 of the shocks in an n-dimensional

SVAR model are leptokurtic. Moreover, if there are fewer than n−1 skewed shocks, they are

identified, while the remaining shocks are only set identified. A similar partial identification

result applies to the leptokurtic shocks. The partial identification results pertaining to the

skewed and leptokurtic shocks can also be combined such that some of them can be identified

because they are skewed, and some because they are leptokurtic, while the symmetric and

mesokurtic shocks are not identified. Finally, we show how identification of the SVAR

model by statistical properties of the shocks facilitates checking the validity of exogneous

4These impulse responses are not shown to save space but are available upon request.
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instruments used to strengthen identification.

Capturing the non-Gaussian features of the data calls for versatile error distributions. In

addition, to strengthen identification and to avoid misspecification, it is important to model

potential conditional volatility of the errors. To that end, we explicitly consider skewed

t-distributed errors following GARCH(1,1) processes. Although not necessary, Bayesian

methods are recommended because of the complexity of the model, and we discuss their

implementation in detail in this model that is likely to be widely applicable in econometrics.

Among other things, they have the advantage that they facilitate checking for identification

in a straightforward manner by inspecting the posterior distributions of the shocks.

In an empirical application to the world oil market, we demonstrate how the model is

estimated and how identification is checked. The statistically identified shocks do not carry

any economic interpretation as such, and we demonstrate how they can be labeled by making

use of sign restrictions introduced in the previous literature, conditional volatilities of the

shocks and an exogenous instrument. We also show how the validity of the instrument can

be checked.
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Appendix A Proof of Proposition 1

Let B∗ = BQ and ε∗t = Q−1εt with Q an (n × n) orthogonal matrix define observationally

equivalent SVAR processes, where also ε∗t satisfies Assumption 1 and r components of ε∗t have

nonzero skewness. To retain the elements ofB unconstrained, we normalize the unconditional

variances σii (i = 1, . . . , n) of the the elements of εt to unity.

Let us consider the quantity E[εi,tεj,tεk,t] ≡ Γijk. By ε∗t = Q−1εt, it can be expressed as

Γijk = E

[(
n∑

p=1

Qipε
∗
p,t

)(
n∑

q=1

Qjqε
∗
q,t

)(
n∑

r=1

Qkrε
∗
r,t

)]

= E

[
n∑

p=1

n∑
q=1

n∑
r=1

QipQjqQkrε
∗
p,tε

∗
q,tε

∗
r,t

]

=
n∑

p=1

n∑
q=1

n∑
r=1

QipQjqQkrΓ
∗
pqr, (A.1)

where Γ∗
ijk ≡ E[ε∗i,tε

∗
j,tε

∗
k,t], ε

∗
i,t is the ith, i = 1, . . . , n, element of ε∗t , and Qij is the (i, j)-

element, i, j = 1, . . . , n, of Q. Assumption 1(iii) implies that E[ε∗itε
∗
jtε

∗
kt] = E[ε∗3it ] when

i = j = k and zero otherwise. Therefore, (A.1) above, can be written as

Γijk =
n∑

p=1

n∑
q=1

n∑
r=1

QipQjqQkrΓ
∗
pqr

=
n∑

p=1

QipQjpQkpΓ
∗
ppp. (A.2)

We proceed by considering the following sum of the squared Γijk:

n∑
i=1

n∑
j=1

n∑
k=1

Γ2
ijk =

n∑
i=1

n∑
j=1

n∑
k=1

(
n∑

p=1

n∑
q=1

n∑
r=1

QipQjqQkrΓ
∗
pqr

)2

=
n∑

i=1

n∑
j=1

n∑
k=1

n∑
p=1

n∑
q=1

n∑
r=1

n∑
x=1

n∑
y=1

n∑
z=1

QipQjqQkrQixQjyQkzΓ
∗
pqrΓ

∗
xyz

=
n∑

p=1

n∑
q=1

n∑
r=1

n∑
x=1

n∑
y=1

n∑
z=1

n∑
i=1

n∑
j=1

n∑
k=1

QipQjqQkrQixQjyQkzΓ
∗
pqrΓ

∗
xyz, (A.3)

33



where the first equality follows from (A.1). By the orthogonality of Q, we have

n∑
i=1

QipQiq = δpq =

1, p = q

0, p ̸= q

(A.4)

Using (A.4) above, (A.3) simplifies to

n∑
i=1

n∑
j=1

n∑
k=1

Γ2
ijk =

n∑
p=1

n∑
q=1

n∑
r=1

n∑
x=1

n∑
y=1

n∑
z=1

δpxδqyδrzΓ
∗
pqrΓ

∗
xyz

=
n∑

p=1

n∑
q=1

n∑
r=1

Γ∗2
pqr (A.5)

Recall that based on 1(iii), Γijk ≡ E[εitεjtεkt] = E[ε3it] when i = j = k and zero otherwise.

Therefore, (A.5) reduces to

n∑
i=1

Γ2
iii =

n∑
i=1

Γ∗2
iii (A.6)

Using (A.2), (A.6) can be written as

n∑
i=1

(
n∑

p=1

Q3
ipΓ

∗
ppp

)2

=
n∑

i=1

Γ∗2
iii, (A.7)

or equivalently,

n∑
i=1

(
n∑

p=1

Q3
ip E[ε

∗3
p,t]

)2

=
n∑

i=1

E[ε∗3i,t]
2, (A.8)

From Lemma 15 of Comon (1994), we obtain

n∑
i=1

(
n∑

p=1

Q2
ip

∣∣E[ε∗3p,t]∣∣
)2

≤
n∑

i=1

E[ε∗3i,t]
2. (A.9)
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Combining (A.8) and (A.9), we have

n∑
i=1

(
n∑

p=1

Q2
ip

∣∣E[ε∗3p,t]∣∣
)2

≤
n∑

i=1

(
n∑

p=1

Q3
ip E[ε

∗3
p,t]

)2

, (A.10)

On the other hand, by the orthogonality of Q, it must be that |Qij| ≤ 1 for all i, j = 1, . . . , n,

and hence Q2
ij ≥ Q3

ij. This implies that Q2
ip

∣∣E[ε∗3p,t]∣∣ ≥ ∣∣Q3
ip

∣∣ ∣∣E[ε∗3p,t]∣∣ ≥ Q3
ip E[ε

∗3
p,t] for all

i, p = 1, . . . , n, and, hence

n∑
i=1

(
n∑

p=1

Q2
ip

∣∣E[ε∗3p,t]∣∣
)2

≥
n∑

i=1

(
n∑

p=1

∣∣Q3
ip

∣∣ ∣∣E[ε∗3p,t]∣∣
)2

≥
n∑

i=1

(
n∑

p=1

Q3
ip E[ε

∗3
p,t]

)2

. (A.11)

By (A.10) and (A.11), it must thus be that

n∑
i=1

(
n∑

p=1

Q2
ip

∣∣E[ε∗3p,t]∣∣
)2

=
n∑

i=1

(
n∑

p=1

∣∣Q3
ip

∣∣ ∣∣E[ε∗3p,t]∣∣
)2

=
n∑

i=1

(
n∑

p=1

Q3
ip E[ε

∗3
p,t]

)2

, (A.12)

from which, we obtain Q2
ip

∣∣E[ε∗3p,t]∣∣ = ∣∣Q3
ip

∣∣ ∣∣E[ε∗3p,t]∣∣, or equivalently
Q2

ij(|Qij| − 1)|E(ε∗3j,t)| = 0. i, j = 1, . . . , n (A.13)

Now, according to Assumption 1(iv) at least one structural error has nonzero skewness.

Suppose E
(
ε∗3j,t
)
̸= 0. Then, by (A.13), Qij must be either zero or ±1 for all i = 1, . . . , n. By

the orthogonality of Q, it hence follows that the jth column of Q has exactly one nonzero

element equal to ±1, and for the same reason this nonzero element ±1, is the only nonzero

element in the corresponding row of Q. As a result, ε∗t = Q−1εt implies that ε∗jt must be

equal to one of the elements of εt, say the kth, multiplied by ±1. By B∗ = BQ, (A.13) also

means that the jth column of B∗ is equal to the kth column of B corresponding to the kth

structural error εkt. Obviously, if the number of the skewed structural errors r > 1, then

(A.13) and the orthogonality of Q ensure that each of the r columns of Q has exactly one

nonzero element equal to ±1, and they also ensure that each row corresponding to these

nonzero elements has exactly one nonzero element. Thus, r elements of ε∗t are equal to the

r skewed structural errors in εt, and also r columns of B∗ are equal to the r columns of B
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corresponding to these r skewed structural errors in εt.

In other words, if the r skewed errors are ordered first in both εt and ε∗t , then

Q =

P 0

0 D

 (A.14)

with some (r×r) signed permutation matrix P , and an ((n−r)× (n−r)) orthogonal matrix

D (notice that QQ′ = In together with (A.14), implies that DD′ = In−r). This means that

if we partition B as B = [B1, B2] with B1 (n × r) and B2 (n × (n − r)), by substituting

(A.14) into B∗ = BQ, we immediately see that

B∗
1 = B1P, (A.15)

B∗
2 = B2D, (A.16)

where B∗ = [B∗
1 , B

∗
2 ] with B∗

1 (n × h) and B∗
2 (n × (n − h)). The fact that P is a signed

permutation matrix, as shown above, implies that B1 is identified up to permutation and

sign reversals of its columns, whereas B2 is only set identified, as D is an orthogonal matrix.

This completes the proof of part (i).

To prove part (ii), suppose first that only one component of εt, say, εlt has zero skewness,

and the other components of εt have nonzero skewness. Then, by (A.13), Qij must be either

zero or ±1 for all i, j = 1, . . . , n, j ̸= l, and therefore, by the orthogonality of Q, we know

that each column of Q except the lth has exactly one nonzero element equal to ±1. Similarly,

because of the orthogonality of Q, Q′
iQj = 0 (i ̸= j), and hence the n× (n− 1) matrix Q−l,

obtained by dropping Ql from Q, has exactly one zero row, and each of its remaining rows has

exactly one nonzero element equal to ±1. Therefore, from Q′
jQl = 0 for j = 1, . . . , n, j ̸= l,

it follows that Ql has at most one nonzero element (corresponding to the zero row of Q−l),

and as Q′
lQl = 1, this element must equal ±1. Thus, Q = P , an (n× n) signed permutation

matrix. Obviously, if all components of εt have nonzero skewness, by the orthogonality of Q

and (A.13), Q must be a signed permutation matrix, so B is identified by sign reversals and

ordering of its columns.
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Appendix B Proof of Proposition 2

Let B∗ = BQ and ε∗t = Q−1εt with Q an (n × n) orthogonal matrix define observationally

equivalent SVAR processes, where also ε∗t satisfies Assumption 2 such that the first s (0 < s <

n−1) components of ε∗t are either leptokurtic or platykurtic, and the last n−s (0 < s < n−1)

components have zero excess kurtosis. We partition ε∗t accordingly: ε
∗
t = (ε∗1

′
t , ε∗2

′
t )′ with ε∗1t

an (s× 1) and ε∗2t an ((n− s)× 1) vector. We also partition the orthogonal matrix Q as

Q =

Q1 Q2

Q3 Q4

 , (B.1)

where Q1, Q2, Q3 and Q4 are (s × s), (s × (n − s)), ((n − s) × s)) and ((n − s) × (n − s))

matrices.

The results in Appendix F of Lanne, Liu, and Luoto (2021), imply that under Assumption

2, we have

E(ε2itε
2
jt)− 1 =

n∑
k=1

Q2
ikQ

2
jkΓ

∗
k = 0, i ̸= j (B.2)

where we denote by Γ∗
i = E(ε∗4it ) − 3 the excess kurtosis of the structural errors ε∗it, i =

1, . . . , n, and Qij are the (i, j)-elements, i, j = 1, . . . , n, of Q in ε∗t = Q−1εt. Now, according

to Assumption 2(iv), the components of ε∗1t are all either leptokurtic or platykurtic, whereas

the components of ε∗2t have zero excess kurtosis. Thus, by (B.2), it must be that

Q2
ikQ

2
jk = 0. i, j = 1, . . . , n, i ̸= j, k = 1, . . . , s (B.3)

This means that each column of (Q′
1, Q

′
3)

′ has at most one nonzero element. And, by the

orthogonality of Q, each column of (Q′
1, Q

′
3)

′ has exactly one nonzero element equal to ±1.

Thus, the first s columns (Q′
1, Q

′
3)

′ of Q can be expressed as

Q1

Q3

 = P

 Is

0n−s,s

 , (B.4)

where P is an (n × n) signed permutation matrix. By left multiplying (B.1) by P−1, and
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using (B.4) above, we obtain

P−1Q = O =

 Is O2

0n−s,s O4

 , (B.5)

where we let

P−1

Q2

Q4

 =

O2

O4

 . (B.6)

By the fact that a signed permutation transformation conserves orthogonality, O must be

orthogonal. By the orthogonality of O, we obtain

In = OO′

=

 Is O2

0n−s,s O4

 Is 0′n−s,s

O′
2 O′

4


=

Is +O2O
′
2 O2O

′
4

O4O
′
2 O4O

′
4

 , (B.7)

Thus, O4 is an orthogonal matrix: O4O
′
4 = In−s. By the orthogonality of O4, it follows that

O4 is of full rank, and, hence, the conditions O4O
′
2 = 0n−s,s and O2O

′
4 = 0s,n−s, provided by

(B.7) above, hold if and only if O2 = 0s,n−s.

Based on these results, (B.5) can be rewritten as

Q = P

 Is 0s,n−s

0n−s,s O4

 . (B.8)

From ε∗t = Q−1εt, we hence obtain

εt = P

 ε∗1t

O4ε
∗2
t

 . (B.9)

Because ε∗1t contains errors with nonzero excess kurtosis, the leptokurtic (or platykurtic)

structural errors in εt are point identified, but their order (and signs) are unknown. The

remaining n−s structural errors in εt have zero excess kurtosis, since ε
∗2
t contains mesokurtic
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errors, and they are only set identified, as O4 is an orthogonal matrix.

Similarly, let us partition B∗ as B∗ = [B∗
1 , B

∗
2 ] with B∗

1 and B∗
2 (n× s) and (n× (n− s))

matrices, respectively. Then, by substituting (B.8) into B∗ = BQ, we immediately see that

B =
(
B∗

1 B∗
2O

−1
4

)
P−1. (B.10)

The fact that P−1 = P ′, a signed permutation matrix, implies that the s columns of B

corresponding to the leptokurtic (platykurtic) structural errors, are point identified, but

their order and signs are unknown. And the remaining n− s columns of B are set identified,

as O−1
4 is an orthogonal matrix.

Finally, it can be readily checked that these results hold for any ordering of the com-

ponents of ε∗t . To see this, notice that by (B.3), there are s columns each of which has at

most one nonzero element, despite their order. By the orthogonality of Q, in turn, these

nonzero elements on each column are equal to ±1, and, for the same reason, this ±1 is also

the only nonzero element in the corresponding row of Q. Thus, (B.8) can also be obtained

using (B.3) and the orthogonality of Q.

To prove part (ii), suppose first that only one component of εt, say, εlt has zero excess

kurtosis (i.e., Γ∗
l = 0, 1 ≤ l ≤ n). Then, because the remaining components of εt are all either

leptokurtic or platykurtic, by (B.2), Q2
ikQ

2
jk = 0 for all i, j, k = 1, . . . , n, i ̸= j, k ̸= l, and

therefore we know that each column of Q except the lth has at most one nonzero element.

By the orthogonality of Q, it thus follows that Qk, the kth column of Q, (k = 1, . . . , n,

k ̸= l) has exactly one nonzero element equal to ±1. Similarly, because of the orthogonality

of Q, Q′
iQj = 0 (i ̸= j), and hence the n × (n − 1) matrix Q−l, obtained by dropping Ql

from Q, has exactly one zero row, and each of its remaining rows has exactly one nonzero

element equal to ±1. Therefore, from Q′
kQl = 0 for k = 1, . . . , n, k ̸= l, it follows that Ql

has at most one nonzero element (corresponding to the zero row of Q−l), and as Q′
lQl = 1,

this element must equal ±1. Thus, Q = P , a signed permutation matrix. Obviously, if all

components of εt have nonzero skewness, by the orthogonality of Q and (B.2), Q must be a

signed permutation matrix, so B is identified by sign reversals and ordering of its columns.
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Appendix C Proof that Q̃ = diag(Q̃1, Q̃4)

Consider the SVAR process in (2) and an observationally equivalent SVAR process defined

by B̃∗ = B̃Q̃ and ε̃∗t = Q̃−1ε̃t with Q̃ an ((n + k) × (n + k)) orthogonal matrix, where

B̃∗ = B̃Q̃ has the same structure as B̃ (that is, B̃∗ is a lower triangular matrix).

From (3), we obtain

B̃∗ = B̃Q̃

=

B 0n,k

Φ Σ
1/2
η

Q̃1 Q̃2

Q̃3 Q̃4


=

 BQ̃1 BQ̃2

ΦQ̃1 + Q̃3Σ
1/2
η ΦQ̃2 + Q̃4Σ

1/2
η

 . (C.1)

Because B̃∗ is a lower triangular matrix BQ̃2 = 0n,k. Based on the fact that B is of full

rank, BQ̃2 = 0n,k holds if and only if Q̃2 = 0n,k.

By the orthogonality of Q̃, we have

In+k = Q̃Q̃′

=

Q̃1 0′n,k

Q̃3 Q̃4

 Q̃′
1 Q̃′

3

0k,n Q̃′
4


=

Q̃1Q̃
′
1 Q̃1Q̃

′
3

Q̃3Q̃
′
1 Q̃3Q̃

′
3 + Q̃2Q̃

′
2

 . (C.2)

Therefore, Q̃1 is an orthogonal matrix: Q̃1Q̃
′
1 = In. By the orthogonality of Q̃1, it follows

that Q̃1 is of full rank, and, hence, the conditions Q̃1Q̃
′
3 = 0k,n and Q̃3Q̃

′
1 = 0n,k hold if and

only if Q̃3 = 0k,n. Thus Q̃ = diag(Q̃1, Q̃4) as claimed in Section 3.3.

Appendix D Priors on Normalized Structural Shocks

Suppose the researcher is interested in the effect on variable i of a shock that increases the

value of jth variable by one unit, and they want to impose a prior on the instantaneous
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response of the ith variable to this unit shock. Let pη(Bjk, ηijk) be the joint prior density of

Bjk and the quantity of interest ηijk = Bik/Bjk (i, j, k = 1, . . . , n). The joint prior density

of (Bik, Bjk), pB(Bik, Bjk), can be deduced from pη(Bjk, ηijk) using the change-of-variables

formula:

pB(Bik, Bjk) = |J | pη(Bjk, Bik/Bjk)

where the Jacobian matrix J is given by

J =

∂(Bik/Bjk)

∂Bik

∂(Bik/Bjk)

∂Bjk

∂Bjk

∂Bik

∂Bjk

∂Bjk

 =

B−1
jk −BikB

−2
jk

0 1

 .

Assuming that ηijk and Bjk are a priori independent, we obtain

pB(Bik, Bjk) = |J | pη(Bik/Bjk)pB(Bjk) (D.1)

where pη(ηijk) and pB(Bjk) are the marginal prior densities of ηijk and Bjk, respectively.

For instance, suppose that ηijk is the oil supply elasticity measuring the percentage

increase of oil production (variable i) in response to a one percentage increase in the real price

of oil (variable j) caused by a positive demand shock (shock k) (see Braun and Brüggeman

(2022)). Then, we can follow Baumeister and Hamilton (2015) in using a truncated Student

t density for ηijk. In particular,

pη(ηijk) =
Γ
(

νijk+1

2

)
(1− F (0))(νijkπ)1/2Γ

(νijk
2

) (1 + (ηijk − cη,ijk)
2

σ2
η,ijkνijk

)−(νijk+1)/2

if ηijk > 0 and zero otherwise, where cη,ijk, νijk, and ση,ijk are prior hyper-parameters, and

F (0) is the shorthand notation for the cumulative distribution F (0; cijk, ση,ijk, νijk). Thus,

plugging in the expression above into (D.1), we have

pB(Bik, Bjk) =
∣∣B−1

jk

∣∣ Γ
(

νijk+1

2

)
(1− F (0))(νijkπ)1/2Γ

(νijk
2

) (1 + (Bik/Bjk − cη,ijk)
2

σ2
η,ijkνijk

)−(νijk+1)/2

pB(Bjk)
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if Bik/Bjk > 0 and zero otherwise.
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