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Appendix A Proof of Proposition 1

Suppose εt = B−1ut satisfies Assumption 1, and assume that A in (11) solves the moment

conditions (12)–(15). Letting Q = AB, and using εt = B−1ut, the unmixed innovations in

(11) can be expressed as

et = Aut = Qεt. (A.1)

Now we are ready to show that if the conditions (12)–(15) (together with Assumption 1) are

satisfied, then there exists a signed permutation matrix P such that Q = P . This together

with Q = AB implies that et = Pεt and A = PB−1, and hence, B is globally identified up

to signs and permutation of its columns (i.e., the structural shocks can be recovered from

the estimated reduced form errors, but their signs and order remain unknown).

First, notice that conditions (12) and (13) together with (A.1) and Assumption 1 im-

ply that Q is orthogonal: I = E(ete
′
t) = QE(εtε

′
t)Q

′ = QQ′. The rest of the proof is

straightforward and relies on the following results derived in Supplementary Appendix F:

E(e2ite
2
jt)− 1 =

n
∑

k=1

Q2
ikQ

2
jkΓk = 0, i > j (A.2)

E(e3itejt) =

n
∑

k=1

Q3
ikQjkΓk = 0, i 6= j. (A.3)

where we denote by Γi = E(ε4it) − 3 the excess kurtosis of the structural shocks εit, i =

1, . . . , n, and Qij are the (i, j)-elements, i, j = 1, . . . , n, of Q in (A.1).

Now, based on (A.2) and (A.3), conditions (14) and (15) yield

Q2
11Q

2
21Γ1 +Q2

12Q
2
22Γ2 = 0, (A.4)

Q3
11Q21Γ1 +Q3

12Q22Γ2 = 0. (A.5)

According to Assumption 1(iv) at most one component of εt has zero excess kurtosis.

Suppose first that both Γ1 and Γ2 are different from zero (i.e., both shocks have nonzero

excess kurtosis). Then, multiplying (A.4) by Q11 and (A.5) by Q21 and subtracting the

first resulting equation from the second yields

Q22Q
2
12(Q21Q12 −Q11Q22)Γ2 = 0. (A.6)
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Therefore, if both Q22 and Q12 are different from zero, we have

Q21Q12 = Q11Q22. (A.7)

This implies that det(Q) = 0 but Q was shown to be orthogonal, a contradiction. Thus,

either Q12 or Q22 is zero (they cannot both be zero because Q is orthogonal).

Suppose Q12 = 0, then the orthogonality of Q implies

QQ′ =





Q2
11 Q11Q21

Q11Q21 Q2
21 +Q2

22



 =





1 0

0 1



 , (A.8)

which yields Q2
11 = 1, Q11Q21 = 0, and Q2

21 +Q2
22 = 1. Therefore,

Q =





±1 0

0 ±1



 , (A.9)

a signed permutation matrix. Similarly, if Q22 = 0, we have

Q =





0 ±1

±1 0



 , (A.10)

also a signed permutation matrix. As already discussed, this together with Q = AB

implies that et = Pεt and A = PB−1, and hence, B is globally identified up to sign and

permutation of its columns.

Suppose now that Γ1 = 0 (i.e., ε1t has zero excess kurtosis) and Γ2 6= 0. Then for (A.4)

(and (A.5)) to hold, either Q12 or Q22 must be zero (they cannot both be zero because Q

is orthogonal). If Q12 = 0, by the orthogonality of Q, Q is given by (A.9), and if Q22 = 0,

for the same reason, Q is given by (A.10). Hence Q = P implying that et = Pεt and

A = PB−1. Similarly, if Γ2 = 0 and Γ1 6= 0, then (A.4) and (A.5) imply that either Q21 or

Q11 must be zero. Using the same arguments as above, we have that in the former case Q

is given by (A.9) and in the latter by (A.10), and therefore Q = P .

Finally, if Assumption 1(iv) does not hold, so that both ε1t and ε2t have zero excess

kurtosis (Γ1 = Γ2 = 0), equations (A.4) and (A.5) are satisfied for any choice of Q. Thus,

the structural errors εt cannot be expressed as a unique linear combination of the reduced-

form errors ut.
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Appendix B Proof of Proposition 2

Suppose that εt = B−1ut satisfies Assumption 2, and assume that A in (11) solves the

moment conditions (16)–(18). Then, by conditions (16) and (17), and using et = Qεt (see

(A.1) in Appendix A) and Assumptions 2(ii)–(iii), we obtain I = E(ete
′
t) = QE(εtε

′
t)Q

′ =

QQ′. That is, Q is orthogonal.

From (A.2) in Appendix A, condition (18) yields

E(e2ite
2
jt)− 1 =

n
∑

k=1

Q2
ikQ

2
jkΓk = 0, i 6= j (B.1)

where we use the fact that E(e2ite
2
jt) = E(e2jte

2
it). By Assumption 2(iv) at most one com-

ponent of εt has zero excess kurtosis, while the excess kurtosis of each of the remaining

n − 1 components has the same sign (i.e., these n − 1 shocks are all either leptokurtic or

platykurtic).

Suppose first that all the shocks have positive (negative) excess kurtosis: Γk > 0 (Γk <

0) for all k = 1, . . . , n. Then, by (B.1) it must be that

Q2
ikQ

2
jk = 0. i, j, k = 1, . . . , n (B.2)

This means that each column of Q has at most one nonzero element. Thus, by the or-

thogonality of Q, each column of Q has exactly one nonzero element, and for the same

reason each row of Q has exactly one nonzero element equal to ±1. Thus, Q = P , a signed

permutation matrix.

Suppose next that only one component of εt, say, εlt has zero excess kurtosis (i.e., Γl = 0,

1 ≤ l ≤ n). Then, by (B.1), Q2
ikQ

2
jk = 0 for all i, j, k = 1, . . . , n, k 6= l, and therefore we

know that each column of Q except the lth has at most one nonzero element. By the

orthogonality of Q, it thus follows that Qk, the kth column of Q, (k = 1, . . . , n, k 6= l)

has exactly one nonzero element equal to ±1. Similarly, because of the orthogonality of Q,

Q′
iQj = 0 (i 6= j), and hence the n× (n− 1) matrix Q−l, obtained by dropping Ql from Q,

has exactly one zero row, and each of its remaining rows has exactly one nonzero element

equal to ±1. Therefore, from Q′
kQl = 0 for k = 1, . . . , n, k 6= l, it follows that Ql has at

most one nonzero element (corresponding to the zero row of Q−l), and as Q′
lQl = 1, this

element must equal ±1. Thus, Q = P , a signed permutation matrix.
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Finally, it is important to realize that additional asymmetric co-kurtosis conditions of

the form E(e3itejt) = 0 (i 6= j) do not destroy the global identification result. Since Q is a

signed permutation matrix under Assumption 2, either Qik or Qjk must equal zero for all

i, j, k = 1, . . . , n, and this is exactly what is required for

E(e3itejt) =

n
∑

k=1

Q3
ikQjkΓk = 0, i 6= j,

to hold as well.
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Appendix C Second-order local identification of B

We consider θ = vec(A) that is more convenient to work with than ϑ = vec(B). Recall that

A = PB−1, where P is a signed (n×n) permutation matrix. We begin by showing that first-

order local identification fails. The necessary condition for first-order local identification of

B is that the expectation of the Jacobian matrix E[JT (θ0)], evaluated at θ0, the true value

of θ, has full column rank k. Thus, we need to show that, for θ, the row vector of k = n2

parameters to be estimated, and f (ut, θ0) the vector of population moment conditions

(16)–(18), rank(E [∂f(ut, θ0)/∂θ
′]) < k. Because the row rank equals the column rank of a

square matrix, it suffices to show that some rows of M(θ0) ≡ E [∂f(ut, θ0)/∂θ
′] are linearly

dependent. The n2 × n2 matrix M(θ0) is obtained by stacking the n components of the

form (C.1), the n(n − 1)/2 components of the form (C.2), and n(n − 1)/2 components of

the form (C.3):

E

[

∂e2it
∂θ′

∣

∣

∣

∣

θ=θ0

]

= 2(b′0i ⊗ ι′i), i = 1, . . . , n, (C.1)

E

[

∂eitejt
∂θ′

∣

∣

∣

∣

θ=θ0

]

= (b′0i ⊗ ι′j) + (b′0j ⊗ ι′i), i > j, (C.2)

E

[

∂e2ite
2
jt

∂θ′

∣

∣

∣

∣

θ=θ0

]

= 2(b′0i ⊗ ι′i) + 2(b′0j ⊗ ι′j), i > j, (C.3)

where i, j ∈ {1, ..., n}, ιi is the ith column of the n × n identity matrix, and b0i is the ith

column of B0, the true value of B, (expressions (C.1)–(C.3) are derived in Supplementary

Appendix G). It can clearly be seen that any of the rows given by (C.3) is obtained as a

sum of two rows given by (C.1), and hence the Jacobian matrix is of reduced rank.

We now show that although local identification fails at the first order, it holds at the

second order. To this end, we let m(θ) = E[f(ut, θ)] and

M2
k (θ0) = E

[

∂2fk(ut, θ)

∂θ∂θ′

∣

∣

∣

∣

θ=θ0

]

, k = 1, 2, . . . , n2, (C.4)

where fk(ut, θ) is the kth element of f(ut, θ). Second-order local identification is defined as

follows (adapted from Dovonon and Hall (2018)):
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Definition 1. The moment condition m(θ) = 0 locally identifies θ0 up to the second order

if :

(a) m(θ0) = 0

(b) for all u in the range of M(θ0)
′ and all v in the null space of M(θ0), we have:

(

M(θ0)u+
(

v′M2
k (θ0)v

)

1≤k≤n2
= 0
)

⇒ (u = v = 0). (C.5)

Notice first that if v = 0, then by the sufficient condition in (C.5), u must be in the null

space of M(θ0): M(θ0)u = 0. On the other hand, the null space of M(θ0) is the orthogonal

complement of the column space (range) of M(θ0)
′ (see, for example, the result (2.37) in

Seber (2007)). Thus, u is in both the range and the null space of M(θ0)
′, which means that

it must be 0. Therefore, it suffices to show that v = 0 for all u in the range of M(θ0)
′.

To show this, we first introduce the second-order derivatives M2
k (θ0) of the moment

conditions (16)–(18) whose derivation is deferred to Supplementary Appendix G. The n2×

n2 matrices M2
k (θ0) are given by

E

[

∂2e2it
∂θ∂θ′

∣

∣

∣

∣

θ=θ0

]

= 2(B0B
′
0)⊗ (ιiι

′
i), i = 1, . . . , n, (C.6)

E

[

∂2eitejt
∂θ∂θ′

∣

∣

∣

∣

θ=θ0

]

= (B0B
′
0)⊗ (ιiι

′
j + ιjι

′
i) i > j, i, j = 1, . . . , n, (C.7)

E

[

∂2e2ite
2
jt

∂θ∂θ′

∣

∣

∣

∣

θ=θ0

]

= 2(B0ΞjB
′
0)⊗ (ιiι

′
i) + 2(B0ΞiB

′
0)⊗ (ιjι

′
j)

+ 4(B0Υi,jB
′
0)⊗ (ιiι

′
j + ιjι

′
i), i > j, i, j = 1, . . . , n, (C.8)

with Ξi = E[ε2it(εtε
′
t)] and Υi,j = E[εitεjt(εtε

′
t)].

Because all n2 equations in (C.5) must hold for all v in the null space of M(θ0), we use

only some of them to show that if they hold (and v is in the null space of M(θ0)), then

v must be a zero vector. In particular, the equations in (C.5) we have in mind, are the

ones associated with (C.6) and (C.8) (and (C.1) and (C.3)), and we use (C.6) (and (C.1))

multiple times.
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We begin by substituting (C.1) for i and j and (C.3) for i, j (i, j = 1, . . . , n, j < i) into

(C.5), and subtracting the first two rows of the resulting expression from its third row:

2(b′i ⊗ ι′i + b′j ⊗ ι′j)u− 2(b′i ⊗ ι′i)u− 2(b′j ⊗ ι′j)u

+v′

[

E

[

∂2e2ite
2
jt

∂θ∂θ′

∣

∣

∣

∣

θ=θ0

]

− E

[

∂2e2it
∂θ∂θ′

∣

∣

∣

∣

θ=θ0

]

−E

[

∂2e2jt
∂θ∂θ′

∣

∣

∣

∣

θ=θ0

]]

v

= v′

[

E

[

∂2e2ite
2
jt

∂θ∂θ′

∣

∣

∣

∣

θ=θ0

]

− E

[

∂2e2it
∂θ∂θ′

∣

∣

∣

∣

θ=θ0

]

−E

[

∂2e2jt
∂θ∂θ′

∣

∣

∣

∣

θ=θ0

]]

v = 0. (C.9)

Substituting (C.6) and (C.8) into (C.9) yields

2v′ [(B0(Ξj − In)B
′
0)⊗ (ιiι

′
i)] v

+ 2v′
[

(B0(Ξi − In)B
′
0)⊗ (ιjι

′
j)
]

v

+ 4v′
[

(B0Υi,jB
′
0)⊗ (ιiι

′
j + ιjι

′
i)
]

v = 0. (C.10)

By Assumption 2(ii) that the components of the error term εt have no excess co-kurtosis,

Ξi is a (n× n) diagonal matrix with E(ε4it) in the ith diagonal position and ones elsewhere

in the diagonal. Therefore, we have Ξi − In = (E(ε4it) − 1)(ιiι
′
i). Using this result with

B0ιi = b0i, (C.10) can be expressed as

2(E(ε4jt)− 1)v′
[

(b0jb
′
0j)⊗ (ιiι

′
i)
]

v

+ 2(E(ε4it)− 1)v′
[

(b0ib
′
0i)⊗ (ιjι

′
j)
]

v

+ 4v′
[

(B0Υi,jB
′
0)⊗ (ιiι

′
j + ιjι

′
i)
]

v = 0. (C.11)

Again, by Assumption 2(ii) that the components of the error term εt have no excess co-

kurtosis, a typical element E(εitεjtεktεlt) (i > j, i, j, k, l = 1, . . . , n) of the (n × n) matrix

Υi,j is 1 when i = k, j = l 6= k or i = l, j = k 6= l and zero otherwise. As a result,

Υi,j = ιiι
′
j + ιjι

′
i, and the last term on the left hand side of (C.11) becomes

4v′
[

(B0Υi,jB
′
0)⊗ (ιiι

′
j + ιjι

′
i)
]

v = 4v′
[

(b0ib
′
0j + b0jb

′
0i)⊗ (ιiι

′
j + ιjι

′
i)
]

v

= 4v′[(b0i ⊗ ιi)(b
′
0j ⊗ ι′j) + (b0i ⊗ ιj)(b

′
0j ⊗ ι′i)

+ (b0j ⊗ ιi)(b
′
0i ⊗ ι′j) + (b0j ⊗ ιj)(b

′
0i ⊗ ι′i)]v

= 4v′
[

(b0i ⊗ ιj)(b
′
0j ⊗ ι′i) + (b0j ⊗ ιi)(b

′
0i ⊗ ι′j)

]

v, (C.12)
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where in the last equality we use v′(b0i⊗ ιi) = 0 (recall that v is in the null space of M(θ0),

i.e., M(θ0)v = 0, and cf. (C.1)). By adding and subtracting the term 4[(b0j ⊗ ιi)(b
′
0j ⊗ ι′i)+

(b0i ⊗ ιj)(b
′
0i ⊗ ι′j)], we have

4
[

(b0i ⊗ ιj)(b
′
0j ⊗ ι′i) + (b0j ⊗ ιi)(b

′
0i ⊗ ι′j)

]

= 4[(b0i ⊗ ιj + b0j ⊗ ιi)(b0i ⊗ ιj + b0j ⊗ ιi)
′

− (b0j ⊗ ιi)(b
′
0j ⊗ ι′i)− (b0i ⊗ ιj)(b

′
0i ⊗ ι′j)].

Substituting the above into (C.12), and using v′(b0i ⊗ ιj + b0j ⊗ ιi) = 0 (recall again that v

is in the null space of M(θ0)), and cf. (C.2)) yields

4v′
[

(B0Υi,jB
′
0)⊗ (ιiι

′
j + ιjι

′
i)
]

v = −4v′
[

(b0j ⊗ ιi)(b
′
0j ⊗ ι′i) + (b0i ⊗ ιj)(b

′
0i ⊗ ι′j)

]

v

= −4v′
[

(b0jb
′
0j)⊗ (ιiι

′
i) + (b0ib

′
0i)⊗ (ιjι

′
j)
]

v. (C.13)

Substituting (C.13) into (C.11), we obtain

2(E(ε4jt)− 3)v′
[

(b0jb
′
0j)⊗ (ιiι

′
i)
]

v + 2(E(ε4it)− 3)v′
[

(b0ib
′
0i)⊗ (ιjι

′
j)
]

v = 0, (C.14)

where the n2×n2 matrices (b0ib
′
0i)⊗(ιjι

′
j) and (b0jb

′
0j)⊗(ιiι

′
i) are positive semi-definite (their

only nonzero eigenvalues are given by b′0ib0i and b′0jb0j , respectively), implying v′[(b0ib
′
0i)⊗

(ιjι
′
j)]v ≥ 0 and v′[(b0jb

′
0j)⊗ (ιiι

′
i)]v ≥ 0 (i > j, i, j = 1, . . . , n).

By Assumption 2(iv) at most one component of εt has zero excess kurtosis, while the

excess kurtosis of each of the remaining n−1 components has the same sign (i.e., these n−1

shocks are all either leptokurtic or platykurtic). Suppose first E(ε4it)−3 is positive (negative)

for all i = 1, . . . , n. Then, by the results v′[(b0ib
′
0i)⊗(ιjι

′
j)]v ≥ 0 and v′[(b0jb

′
0j)⊗(ιiι

′
i)]v ≥ 0

obtained above together with (b0ib
′
0i) ⊗ (ιjι

′
j) = (b0i ⊗ ιj)(b

′
0i ⊗ ι′j), it follows from (C.14)

that v′(b0i ⊗ ιj) = 0 and v′(b0j ⊗ ιi) = 0 (i > j, i, j = 1, . . . , n). Using v′(b0i ⊗ ιi) = 0, we

hence obtain

v′(b0k ⊗ ιl) = 0, for all k, l = 1, . . . , n, (C.15)

a system of n2 linear equations of the form Cv = 0, where the n2×n2 matrix C is obtained

by stacking b′0k ⊗ ι′l for k, l = 1, . . . , n. By the linear independence of b0is, C is of full rank,

and hence, by the invertible matrix theorem, Cv = 0 has only the trivial solution v = 0.

Suppose next that E(ε4it) − 3 = 0 for some i (0 ≤ i ≤ n). Then, by the preceding

discussion, (C.14) yields

v′(b0k ⊗ ιl) = 0. for all k, l = 1, . . . , n, k 6= i. (C.16)
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Because permuting the rows of a matrix does not change its rank and because (C.16) must

hold for any permutation of the rows of εt, we may set i = n without loss of generality. By

the assumption in Definition 1(b) that v is in the null space of M(θ0), it follows from (C.1)

and (C.2) that

v′(b0n ⊗ ιn) = 0, (C.17)

and

v′[(b0n ⊗ ιj) + (b0j ⊗ ιn)] = 0, j = 1, . . . , n− 1 (C.18)

respectively. Combining (C.16)–(C.18), we have a system of n2 linear equations of the

form Dv = 0, where the n2 × n2 matrix D is obtained by stacking (b′0k ⊗ ι′l) for k, l =

1, . . . , n, k < n, (b′0n ⊗ ι′n), and [(b′0n ⊗ ι′j) + (b′0j ⊗ ι′n)] for j = 1, . . . , n − 1. By some

row-addition transformations, D can be transformed into C, and hence it is of full rank.

Thus, by the invertible matrix theorem, Dv = 0 has only the trivial solution v = 0.
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Appendix D Proof of Proposition 3

We consider θ = vec(A) that is more convenient to work with than ϑ = vec(B). Recall that

A = PB−1, where P is a signed (n× n) permutation matrix. The necessary condition for

first-order local identification of B is that the expectation of the Jacobian matrix E[JT (θ0)],

evaluated at θ0, the true value of θ, has full column rank k. Thus, we need to show that

rank(E [∂f(ut, θ0)/∂θ
′]) = k for θ, the row vector of k = n2 parameters to be estimated,

and f (ut, θ0), the vector of population moment conditions, consisting of (16)–(18) and

n(n − 1)/2 asymmetric co-kurtosis conditions of the form E(e3itejt) = 0 (i 6= j). Because

the row rank equals the column rank, it suffices to show that k = n2 rows of M(θ0) ≡

E [∂f(ut, θ0)/∂θ
′] are linearly independent. The (n2 + n(n − 1)/2) × n2 matrix M(θ0) is

obtained by stacking the n components of the form (D.1), the n(n − 1)/2 components of

the form (D.2), n(n − 1)/2 components of the form (D.3), and n(n − 1)/2 components of

the form (D.4):

E

[

∂e2it
∂θ′

∣

∣

∣

∣

θ=θ0

]

= 2(b′0i ⊗ ι′i), i = 1, . . . , n, (D.1)

E

[

∂eitejt
∂θ′

∣

∣

∣

∣

θ=θ0

]

= (b′0i ⊗ ι′j) + (b′0j ⊗ ι′i), i > j, (D.2)

E

[

∂e2ite
2
jt

∂θ′

∣

∣

∣

∣

θ=θ0

]

= 2(b′0i ⊗ ι′i) + 2(b′0j ⊗ ι′j), i > j, (D.3)

E

[

∂e3itejt
∂θ′

∣

∣

∣

∣

θ=θ0

]

= E(ε4it)(b
′
0i ⊗ ι′j) + 3(b′0j ⊗ ι′i), i 6= j, (D.4)

where i, j ∈ {1, ..., n}, ιi is the ith column of the n × n identity matrix, and b0i is the ith

column of B0, the true value of B, (the expressions (D.1)–(D.3) are taken from (C.1)–(C.3)

in Appendix C, and expression (D.4) is derived in the same manner as (C.1)–(C.3)).

Any of the rows given by (D.3) is obtained as a sum of two rows given by (D.1) (see the

discussion Appendix C), and hence, only n of the rows corresponding to (D.1) and (D.3) are

linearly independent. Also the n+n(n− 1)/2 rows of the form (D.1) and (D.2) are readily

seen to be linearly independent. Furthermore, they are also linearly independent of the

n(n−1)/2 rows of the form (D.4), provided at most one of the components of εt is Gaussian
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(has zero excess kurtosis) and suitable asymmetric co-curtosis conditions are selected. To

see this, suppose first that all n components of εt have positive excess kurtosis. In this case,

generally E(ε4it) 6= 3 for all i, and it is not possible to express any of the n(n− 1)/2 rows of

the form (D.4) as a linear combination of the n+n(n−1)/2 rows given by (D.1) and (D.2),

and because we thus have n+ n(n− 1)/2+n(n− 1)/2 = n2 = k linearly independent rows

in the Jacobian matrix M(θ0), it is of full column rank. In contrast, if the ith component

of εt is Gaussian, so that E(ε4it) = 3, one of the rows given by (D.4) may equal 3 times one

of the rows given by (D.2). Then the Jacobian matrix is of reduced column rank. However,

by inspecting (D.4), it is easy to see that if the asymmetric co-kurtosis conditions do not

involve the third power of the element of εt that has zero excess kurtosis, the rows given by

(D.2) and (D.4) are linearly independent, and the Jacobian matrix is of full column rank.
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Appendix E Asymptotic distribution of the two-stage

estimator

In this appendix, we derive the asymptotic distribution of the two-stage estimator of the

parameters of the SVAR model, consisting of the OLS estimator π̂ of π = vec(ν, A1, . . . , Ap)

and the GMM estimator ϑ̂ of ϑ = vec(B) based on the OLS residuals ut. The derivation is

straightforward, with the most essential parts following Subsection 5.2 of the Supplemen-

tary Appendix to Gouriéroux et al. (2020).

Let us first write T 1/2(π̂ − π0) as

T 1/2(π̂ − π0) =





(

T−1

T
∑

t=1

Zt−1Z
′
t−1

)−1

⊗ In



T−1/2

T
∑

t=1

vec(utZ
′
t−1), (E.1)

where Zt = (1, y′t, . . . , y
′
t−p+1)

′, π0 is the true value of π, and it is assumed that the proba-

bility limit F of FT = T−1
∑T

t=1 Zt−1Z
′
t−1 exists and is nonsingular. The above expression

can be found in Lütkepohl (2005 Chapter 3.2).

The GMM estimator of ϑ given the OLS estimator π̂ is given by

ϑ̂ = argmin
ϑ

1

T

T
∑

t=1

f(ut(π̂), ϑ)
′WT

1

T

T
∑

t=1

f(ut(π̂), ϑ) (E.2)

with the positive semi-definite (q × q) matrix WT (potentially dependent on the data)

converging to a positive definite weighting matrix W . The two-stage GMM estimator in

(E.2) is consistent and asymptotically normal under standard regularity conditions. It

is important to realize, however, that its asymptotic covariance matrix depends on the

OLS estimation error. It follows that the optimal weighting matrix also depends on the

estimation error.

To derive the asymptotic covariance matrix and the optimal weighting matrix, we begin

with the first order conditions for (E.2):

1

T

T
∑

t=1

f(ut(π̂), ϑ̂)
′WT

1

T

T
∑

t=1

∂f(ut(π̂), ϑ̂)

∂ϑ′
= 0. (E.3)

We simplify the presentation by defining gT (π, ϑ) = T−1
∑T

t=1 f(ut(π), ϑ), GT (π;ϑ) =

T−1
∑T

t=1
∂f(ut(π),ϑ)

∂π′
, and GT (ϑ; π) = T−1

∑T
t=1

∂f(ut(π),ϑ)
∂ϑ′

. The mean value theorem implies
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that

gT (π̂, ϑ̂) = gT (π̂, ϑ0) +GT (ϑ̂, ϑ0, c
1
T ; π̂)(ϑ̂− ϑ0), (E.4)

and

gT (π̂, ϑ0) = gT (π0, ϑ0) +GT (π̂, π0, c
2
T ;ϑ0)(π̂ − π0), (E.5)

where ϑ0 is the true value of ϑ, and the ith row of the (q × n2) matrix GT (ϑ̂, ϑ, c
1
T ; π̂) is

the corresponding row of GT (ϑ̄
(i); π̂) with ϑ̄(i) = c1T,iϑ0 + (1 − c1T,i)ϑ̂ for some 0 ≤ c1T,i ≤ 1

(see Hall (2005, Chapter 3.4.2)). Similaryly, the ith row of the (q × n(np + 1)) matrix

GT (π̂, π, c
2
T ;ϑ) is the corresponding row of GT (π̄

(i);ϑ) with π̄(i) = c2T,iπ0 + (1 − c2T,i)π̂ for

some 0 ≤ c2T,i ≤ 1. Here c1T = (c1T,1, . . . , c
1
T,q) and c2T = (c2T,1, . . . , c

2
T,q).

Substituting (E.5) into (E.4), premultiplying the resulting equation by GT (ϑ̂; π̂)
′WT ,

and using (E.3), we obtain

T 1/2(ϑ̂− ϑ0) = −[GT (ϑ̂; π̂)
′WTGT (ϑ̂, ϑ0, c

1
T ; π̂)]

−1

×GT (ϑ̂; π̂)
′WT [T

1/2gT (π0, ϑ0) +GT (π̂, π0, c
2
T ;ϑ0)T

1/2(π̂ − π0)]. (E.6)

Based on the arguments in Hall (2005, Chapter 3.4.2), both GT (ϑ̂; π̂) and GT (ϑ̂, ϑ, c
1
T ; π̂)

converge in probability to Gϑ = E
[

∂f(ut(π0),ϑ0)
∂ϑ′

]

. Similarly, GT (π̂, π0, c
2
T ;ϑ0) converges in

probability to Gπ = E
[

∂f(ut(π0),ϑ0)
∂π′

]

. Hence, (E.6) together with (E.1) implies that for

T → ∞,

T 1/2





π̂ − π

ϑ̂− ϑ



 ≈





F−1 ⊗ In 0

−I−1
ϑϑ Iϑπ(F

−1 ⊗ In) −I−1
ϑϑG

′
ϑW









T−1/2
∑T

t=1 vec(utZ
′
t−1)

T−1/2
∑T

t=1 f(ut, ϑ0)



 . (E.7)

where Iϑϑ = G′
ϑWGϑ, Iϑπ = G′

ϑWGπ and F = E
(

Zt−1Z
′
t−1

)

.

As shown in Lütkepohl (2005, Chapter 3.2.2) and Hall (2005, Chapter 3.4.2), respec-

tively, the zero mean vectors T−1
∑T

t=1 vec(utZ
′
t−1) and T−1

∑T
t=1 f(ut, ϑ0) in the latter

matrix are asymptotically normally distributed under standard assumptions. Thus, based

on the properties of the multivariate normal distribution, we obtain

T−1/2





∑T
t=1 vec(utZ

′
t−1)

∑T
t=1 f(ut, ϑ)





d
−→ N(0, H), (E.8)
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with

H = lim
T→∞

V ar



T 1/2





T−1
∑T

t=1 vec(utZ
′
t−1)

T−1
∑T

t=1 f(ut, ϑ0)







, (E.9)

the long-run covariance matrix of all moment conditions. Combining (E.7) and (E.8), we

have (see, e.g., Hall (2005, Lemma 1.4))

T 1/2





π̂ − π

ϑ̂− ϑ





d
→ N(0,Ω), (E.10)

where

Ω =





F−1 ⊗ In 0

−I−1
ϑϑ Iϑπ(F

−1 ⊗ In) −I−1
ϑϑG

′
ϑW



H





F−1′ ⊗ In −(F−1′ ⊗ In)I
′
ϑπI

−1
ϑϑ

0 −W ′GϑI
−1
ϑϑ



 . (E.11)

Hence, according to (E.10) above

T 1/2(ϑ̂− ϑ)
d
→ N(0,Ωϑϑ), (E.12)

where

Ωϑϑ =
[

I−1
ϑϑ Iϑπ(F

−1 ⊗ In) I−1
ϑϑG

′
ϑW
]

H
[

I−1
ϑϑ Iϑπ(F

−1 ⊗ In) I−1
ϑϑG

′
ϑW
]′

= I−1
ϑϑG

′
ϑ[WGπ(F

−1 ⊗ In) W ]H [WGπ(F
−1 ⊗ In) W ]′GϑI

−1
ϑϑ

= I−1
ϑϑG

′
ϑWH0W

′GϑI
−1
ϑϑ

= [G′
ϑWGϑ]

−1G′
ϑWH0W

′Gϑ[G
′
ϑWGϑ]

−1 (E.13)

with

H0 = [Gπ(F
−1 ⊗ In) Iq]H [Gπ(F

−1 ⊗ In) Iq]
′ (E.14)

The optimal weighting matrix is obtained by setting W = H−1
0 (see Gouriéroux et al.

(2020)), and, in this case, (E.13) reduces to

Ωϑϑ = [G′
ϑH

−1
0 Gϑ]

−1. (E.15)

Finally, a consistent estimator of Ω, Ω̂T , is obtained by replacing Gϑ and Gπ by their

consistent estimators GT (ϑ̂; π̂) = T−1
∑T

t=1
∂f(ut(π̂),ϑ̂)

∂ϑ′
and GT (π̂; ϑ̂) = T−1

∑T
t=1

∂f(ut(π̂),ϑ̂)
∂π′

,

respectively, and H is estimated consistently under quite general conditions discussed in

Hall (2005 Chapter 3.5) by a member of the class of HAC covariance matrix estimators, in-

cluding the Newey-West estimator. Also, F needs to be replaced by its consistent estimator

FT = T−1
∑T

t=1 Zt−1Z
′
t−1.
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Appendix F Derivation of equations (A.2) and (A.3)

We begin with (A.2), and then derive (A.3). Using et = Qεt in (A.1), condition (18) can

be written as

E(e2ite
2
jt)− 1 = E[(Qi1ε1t + · · ·+Qinεnt)

2(Qj1ε1t + · · ·+Qjnεnt)
2]− 1 = 0. (F.1)

By straightforward manipulation of the squared quantities (Qi1ε1t+· · ·+Qinεnt)
2, we obtain

(

n
∑

k=1

Qikεkt

)2

=

n
∑

k=1

Q2
ikε

2
kt +

n
∑

l=1

∑

m=1,...,n;m6=l

QilQimεltεmt. (F.2)

Using this result, by Assumption 1(ii) that the components of the error term εt have no

excess co-kurtosis, we have that

E(e2ite
2
jt) = E

[(

n
∑

k=1

Q2
ikε

2
kt

)(

n
∑

k=1

Q2
jkε

2
kt

)]

+ E

[(

n
∑

l=1

∑

m=1,...,n;m6=l

QilQimεltεmt

)(

n
∑

l=1

∑

m=1,...,n;m6=l

QjlQjmεltεmt

)]

. (F.3)

Again, from Assumption 2(ii), by adding and subtracting
∑n

k=1Q
2
ikQ

2
jk, the first term on

the right hand side of (F.3) yields

E

[(

n
∑

k=1

Q2
ikε

2
kt

)(

n
∑

k=1

Q2
jkε

2
kt

)]

=
n
∑

k=1

Q2
ikQ

2
jkE(ε4kt)−

n
∑

k=1

Q2
ikQ

2
jk

+

(

n
∑

k=1

Q2
ik

)(

n
∑

k=1

Q2
jk

)

=

n
∑

k=1

Q2
ikQ

2
jkE(ε4kt)−

n
∑

k=1

Q2
ikQ

2
jk + 1, (F.4)

where in the last equality we use the orthogonality of Q (
∑n

k=1Q
2
ik = 1).

We now turn to the latter term on the right hand side of (F.3), which we denote by K:

K = E

[(

n
∑

l=1

∑

m=1,...,n;m6=l

QilQimεltεmt

)(

n
∑

l=1

∑

m=1,...,n;m6=l

QjlQjmεltεmt

)]

.

Assumptions 1(ii)–(iii) imply that E(εitεjtεktεlt) = 1 when i = k, j = l 6= k (or i = l, j =

k 6= l or i = j 6= k = l) and zero otherwise (excluding the case i = j = k = l). Therefore,
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we find that

K = 2

n
∑

l=1

∑

m=1,...,n;m6=l

QilQimQjlQjm

= 2
n
∑

l=1

n
∑

m=1

QilQjlQimQjm − 2
n
∑

k=1

Q2
ikQ

2
jk

= 2

(

n
∑

m=1

QimQjm

)2

− 2

n
∑

k=1

Q2
ikQ

2
jk

= −2

n
∑

k=1

Q2
ikQ

2
jk, (F.5)

where the last equality holds due to the orthogonality of Q (
∑n

m=1QimQjm = 0).

Combining the above results, condition (18) can be expressed as

E(e2ite
2
jt)− 1 =

n
∑

k=1

Q2
ikQ

2
jkE(ε4kt)− 3

n
∑

k=1

Q2
ikQ

2
jk

=
n
∑

k=1

Q2
ikQ

2
jk(E(ε4kt)− 3) = 0, (F.6)

which is Equation (A.2) in Appendix A.

We now derive (A.3). Based on e = Qε (A.1), the asymmetric co-kurtosis conditions

can be written as

E(e3itejt) = E[(Qi1ε1t + · · ·+Qinεnt)
3(Qj1ε1t + · · ·+Qjnεnt)]

= E





(

n
∑

k=1

Qikεkt

)2( n
∑

k=1

Qikεkt

)(

n
∑

k=1

Qjkεkt

)





= 0. (F.7)

Straightforward computations yield
(

n
∑

k=1

Qikεkt

)(

n
∑

k=1

Qjkεkt

)

=
n
∑

k=1

QikQjkε
2
kt +

n
∑

l=1

∑

m=1,...,n;m6=l

QilQjmεltεmt. (F.8)

Multiplying the above equation by (F.2) and taking expectations result in

E(e3itejt) = E

[(

n
∑

k=1

Q2
ikε

2
kt

)(

n
∑

k=1

QikQjkε
2
kt

)]

+ E

[(

n
∑

l=1

∑

m=1,...,n;m6=l

QilQimεlεmt

)(

n
∑

l=1

∑

m=1,...,n;m6=l

QilQjmεltεmt

)]

(F.9)
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by Assumption 2(ii) that the components of the error term εt have no excess co-kurtosis.

For the same reason, the first term on the right hand side of (F.9) yields

E

[(

n
∑

k=1

Q2
ikε

2
kt

)(

n
∑

k=1

QikQjkε
2
kt

)]

=

n
∑

k=1

Q3
ikQjkE(ε4kt)−

n
∑

k=1

Q3
ikQjk

+
n
∑

l=1

n
∑

m=1

Q2
ilQimQjm

=
n
∑

k=1

Q3
ikQjkE(ε4kt)−

n
∑

k=1

Q3
ikQjk

+

(

n
∑

k=1

Q2
ik

)(

n
∑

k=1

QikQjk

)

=
n
∑

k=1

Q3
ikQjkE(ε4kt)−

n
∑

k=1

Q3
ikQjk, (F.10)

where in the first equality we add and subtract the term
∑n

k=1Q
3
ikQjk, and in the last

equality we use the orthogonality of Q.

We denote by M the last term on right hand side of (F.9):

M = E

[(

n
∑

l=1

∑

m=1,...,n;m6=l

QilQimεltεmt

)(

n
∑

l=1

∑

m=1,...,n;m6=l

QilQjmεltεmt

)]

.

Now, recall that Assumptions 1(ii)–(iii) imply that E(εitεjtεktεlt) = 1 when i = k, j = l 6= k

(or i = l, j = k 6= l or i = j 6= k = l) and zero otherwise (excluding the case i = j = k = l).

Therefore, by straightforward calculations, from the last term on right hand side of (F.9),

we find that

M = 2

n
∑

l=1

∑

m=1,...,n;m6=l

QilQimQilQjm

= 2
n
∑

l=1

n
∑

m=1

Q2
ilQimQjm − 2

n
∑

k=1

Q3
ikQjk

= 2

(

n
∑

k=1

Q2
ik

)(

n
∑

k=1

QikQjk

)

− 2
n
∑

k=1

Q3
ikQjk

= −2
n
∑

k=1

Q3
ikQjk, (F.11)

where in the last equality we use the orthogonality of Q.
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Putting (F.9)–(F.11) together, we obtain

E(e3i ej) =

n
∑

k=1

Q3
ikQjkE(ε4kt)− 3

n
∑

k=1

Q3
ikQjk

=

n
∑

k=1

Q3
ikQjk(E(ε4kt)− 3) = 0, (F.12)

which is Equation (A.3) in Appendix A.
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Appendix G Derivation of equations (C.1)–(C.3) and

(C.6)–(C.8)

We first calculate the first-order derivatives of the functions e2it, eitejt, and e2ite
2
jt in (16)–

(18) with respect to θ = vec(A), and then their second-order derivatives. After computing

the second-order derivatives, we evaluate them at the true parameter value θ0, and take

expectations using the fact that at the true parameter value ut = B0εt and et = εt. Several

results from Seber (2008) are frequently used below; for brevity, result 17.30(h), say, is

referred to as S 17.30(h).

We start by defining eit = ι′iAut = (u′
t ⊗ ι′i)vec(A) with ιi the ith unit vector. Straight-

forward differentiation based on S 17.20(a) yields

[

∂e2it
∂θ

]

= 2eit(ut ⊗ ιi), i = 1, . . . , n. (G.1)

While applying S 17.30(h) to the scalar functions and then using S 17.20(a) yield

[

∂eitejt
∂θ

]

= ejt(ut ⊗ ιi) + eit(ut ⊗ ιj), i > j, i, j = 1, . . . , n. (G.2)

Using the same two results from Seber (2008), we obtain

[

∂e2ite
2
jt

∂θ

]

= 2e2jteit(ut ⊗ ιi)) + 2e2itejt(ut ⊗ ιj)). i > j, i, j = 1, . . . , n (G.3)

The expressions (C.1)–(C.3) in Appendix C are obtained by evaluating (G.1)–(G.3) at the

true parameter value θ0, substituting ut = B0εt and et = εt into the resulting equations,

taking expectations of both sides of these equations using Assumption 2(ii) that the com-

ponents of the error term εt are orthogonal and have no excess co-kurtosis, and transposing.

Based on (G.1)–(G.3), let us next derive the second-second order derivatives. By direct

computation using S 17.20(a), we obtain from (G.1)

[

∂e2it
∂θ∂θ′

]

= 2(ut ⊗ ιi)(u
′
t ⊗ ι′i)

= 2(utu
′
t ⊗ ιiι

′
i), i = 1, . . . , n, (G.4)
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where the latter equality follows from S 11.11(a). In the same manner, from (G.2) we have

[

∂eitejt
∂θ∂θ′

]

= (ut ⊗ ιi)(u
′
t ⊗ ι′j) + (ut ⊗ ιj)(u

′
t ⊗ ι′i)

= (utu
′
t ⊗ ιiι

′
j) + (utu

′
t ⊗ ιjι

′
i)

= (utu
′
t)⊗ (ιiι

′
j + ιjι

′
i), i > j, i, j = 1, . . . , n (G.5)

where the last two equalities are obtained using S 11.11(a) and 11.10(b), respectively.

Applying S 17.30(h) to the scalar functions e2jteit and e2itejt, and then using S 17.20(a),

we obtain

[

∂e2ite
2
jt

∂θ∂θ′

]

= 2(ut ⊗ ιi)
[

e2jt(u
′
t ⊗ ι′i) + 2eitejt(u

′
t ⊗ ι′j)

]

+ 2(ut ⊗ ιj)
[

2eitejt(u
′
t ⊗ ι′i) + e2it(u

′
t ⊗ ι′j)

]

= 2e2jt(utu
′
t ⊗ ιiι

′
i) + 2e2it(utu

′
t ⊗ ιjι

′
j)

+ 4eitejt(utu
′
t)⊗ (ιiι

′
j + ιjι

′
i), i > j, i, j = 1, . . . , n (G.6)

where the latter equality follows from S 11.11(a) and 11.10(b).

Evaluating (G.4) and (G.5) at the true parameter value θ0, substituting ut = B0εt

and et = εt into the resulting equations, and taking expectations, we obtain expressions

(C.6)–(C.7) in Appendix C:

E

[

∂e2it
∂θ∂θ′

]

θ=θ0

= 2(B0E(εtε
′
t)B

′
0 ⊗ ιiι

′
i)

= 2(B0B
′
0)⊗ (ιiι

′
i) i = 1, . . . , n, (G.7)

E

[

∂eitejt
∂θ∂θ′

]

θ=θ0

= (B0E(εtε
′
t)B

′
0)⊗ (ιiι

′
j + ιjι

′
i)

= (B0B
′
0)⊗ (ιiι

′
j + ιjι

′
i), i > j, i, j, k, l = 1, . . . , n, (G.8)

where the latter equalities hold due to Assumption 2(ii)–(iii): E(εtε
′
t) = In. Similarly,

evaluating (G.6) at θ0, substituting ut = B0εt and et = εt into the resulting equation, and
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taking expectations, we obtain expression (C.8) in Appendix C:

E

[

∂e2ite
2
jt

∂θ∂θ′

]

θ=θ0

= 2(B0E[ε2jt(εtε
′
t)]B

′
0 ⊗ ιiι

′
i) + 2(B0E[ε2it(εtε

′
t)]B

′
0 ⊗ ιjι

′
j)

+ 4(B0E[εitεjt(εtε
′
t)]B

′
0)⊗ (ιiι

′
j + ιjι

′
i)

= 2(B0ΞjB
′
0)⊗ (ιiι

′
i) + 2(B0ΞiB

′
0)⊗ (ιjι

′
j)

+ 4(B0Υi,jB
′
0)⊗ (ιiι

′
j + ιjι

′
i), i > j, i, j = 1, . . . , n, (G.9)

where Ξi = E[ε2it(εtε
′
t)], and Υi,j = E[εitεjt(εtε

′
t)].
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